O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DO USUÁRIO VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITORWarty, Samir P.HEDIBERT FREITAS LOPESPolson, Nicholas G.2023-07-252023-07-252014https://repositorio.insper.edu.br/handle/11224/5961In this work, we investigate sequential Bayesian estimation for inference of stochastic volatility with variance-gamma jumps in returns (SVVG). We develop an estimation algorithm that adapts the sequential learning auxiliary particle filter proposed by Carvalho, Johannes, Lopes, and Polson (2010) to SVVG. Simulation evidence and empirical estimation results indicate that this approach is able to filter latent variances, identify latent jumps in returns, and provide sequential learning about the static parameters of SVVG. We demonstrate comparative performance of the sequential algorithm and offline Markov Chain Monte Carlo in synthetic and real data applications.36 p.DigitalInglêsSequential bayesian learning for stochastic volatility with variance-gamma jumps in returnworking paperAuxiliary particle filteringBayesian learningsequential Monte Carlostochastic volatilityvariance gammaBEWP 202/2014