FABRÍCIO JAILSON BARTHPereira, Fernanda de OliveiraHermida, Gabriel Mendonça de MelloMedeiros, Rodrigo Paoliello de2025-11-282025https://repositorio.insper.edu.br/handle/11224/8127Projeto realizado para a empresa Dell TechnologiesA inteligência artificial (IA) generativa, quando aplicada no desenvolvimento de assistentes virtuais, pode, em muitos casos, retornar respostas inadequadas ou incorretas, confundindo usuários e gerando desinformação. Atualmente, são desenvolvidas guardrails que analisam tanto as entradas fornecidas pelos usuários quanto as saídas geradas pelos modelos, garantindo que as respostas devolvidas sejam adequadas. Nesse contexto, a solução deste projeto consistiu na implementação de diferentes tipos de guardrails (escopo, competidores, toxicidade, alucinação, dados sensíveis e técnicas de jailbreak), na definição de métricas específicas para avaliar seu funcionamento e na construção de uma arquitetura suficientemente modular para ser adaptável a diversos contextos. As guardrails implementadas alcançaram resultados satisfatórios conforme as métricas estabelecidas, indicando viabilidade técnica para utilização inicial pela empresa parceira em consultorias de assistência virtual com IA. Apesar disso, o projeto identificou oportunidades de melhoria, especialmente relacionadas à ampliação das bases de treinamento e avaliação, à adoção de mecanismos adaptativos e ao aprimoramento da mitigação de alucinações, visando ampliar sua eficácia em aplicações práticas futuras.Digital41 p.PortuguêsInteligência ArtificialAssistentes VirtuaisLarge Language Models (LLM)GardrailsGuardrails em IA Generativabachelor thesis