O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DO USUÁRIO VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITORPereira, Gustavo H. A.RINALDO ARTES2023-07-262023-07-262014https://repositorio.insper.edu.br/handle/11224/5975Modelos de behavioural scoring são geralmente utilizados para estimar a probabilidade de um cliente de uma instituição financeira que já possui um determinado produto de crédito se tornar inadimplente neste produto em um horizonte de tempo pré-fixado. Porém, frequentemente, um mesmo cliente tem diversos produtos de crédito em uma única instituiçãoo e os modelos de behavioural scoring geralmente tratam cada um deles de forma independente. Para facilitar e tornar mais eficiente o gerenciamento do risco de crédito, é interessante o desenvolvimento de modelos de customer default scoring. Esses modelos buscam estimar a probabilidade de um cliente de uma instituição financeira se tornar inadimplente em pelo menos um produto em um horizonte de tempo pré-fixado. Neste trabalho, são descritas três estratégias que podem ser utilizadas para o desenvolvimento de modelos de customer default scoring. Uma das estratégias é usualmente utilizada por instituições financeiras e as duas outras são propostas neste trabalho. As performances dessas estratégias são comparadas utilizando um banco de dados real fornecido por uma instituição financeira e um estudo de simulação de Monte Carlo.26 p.DigitalPortuguêscredt scoringcustomer scoringequações de estimação generalizadasregressão logísticarisco de créditoModelos de Risco de Crédito de Clientes: Uma aplicação a Dados Reaisworking paperBEWP 208/2014