FABIO JOSE AYRES
Projetos de Pesquisa
Unidades Organizacionais
Resumo profissional
Área de pesquisa
Nome para créditos
4 resultados
Resultados de Busca
Agora exibindo 1 - 4 de 4
Artigo Científico Detection of architectural distortion in prior screening mammograms using Gabor filters, phase portraits, fractal dimension, and texture analysis(2008) Rangayyan, Rangaraj M.; Prajna, Shormistha; FABIO JOSE AYRES; Desautels, J. E. LeoObjective Mammography is a widely used screening tool for the early detection of breast cancer. One of the commonly missed signs of breast cancer is architectural distortion. The purpose of this study is to explore the application of fractal analysis and texture measures for the detection of architectural distortion in screening mammograms taken prior to the detection of breast cancer. Materials and methods A method based on Gabor filters and phase portrait analysis was used to detect initial candidates for sites of architectural distortion. A total of 386 regions of interest (ROIs) were automatically obtained from 14 “prior mammograms”, including 21 ROIs related to architectural distortion. From the corresponding set of 14 “detection mammograms”, 398 ROIs were obtained, including 18 related to breast cancer. For each ROI, the fractal dimension and Haralick’s texture features were computed. The fractal dimension of the ROIs was calculated using the circular average power spectrum technique. Results The average fractal dimension of the normal (false-positive) ROIs was significantly higher than that of the ROIs with architectural distortion (p = 0.006). For the “prior mammograms”, the best receiver operating characteristics (ROC) performance achieved, in terms of the area under the ROC curve, was 0.80 with a Bayesian classifier using four features including fractal dimension, entropy, sum entropy, and inverse difference moment. Analysis of the performance of the methods with free-response receiver operating characteristics indicated a sensitivity of 0.79 at 8.4 false positives per image in the detection of sites of architectural distortion in the “prior mammograms”. Conclusion Fractal dimension offers a promising way to detect the presence of architectural distortion in prior mammograms.Artigo Científico A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs(2007) Rangayyan, Rangaraj M.; FABIO JOSE AYRES; Desautels, J.E. LeoMammography is the best available tool for screening for the early detection of breast cancer. Mammographic screening has been shown to be effective in reducing breast cancer mortality rates: screening programs have reduced mortality rates by 30–70%. Mammograms are difficult to interpret, especially in the screening context. The sensitivity of screening mammography is affected by image quality and the radiologist's level of expertise. Computer-aided diagnosis (CAD) technology can improve the performance of radiologists, by increasing sensitivity to rates comparable to those obtained by double reading, in a cost-effective manner. Current research is directed toward the development of digital imaging and image analysis systems that can detect mammographic features, classify them, and provide visual prompts to the radiologist. Radiologists would like the ability to change the contrast of a mammogram, either manually or with pre-selected settings. Computer techniques for detecting, classifying, and annotating diagnostic features on the images would be desirable. This paper presents an overview of digital image processing and pattern analysis techniques to address several areas in CAD of breast cancer, including: contrast enhancement, detection and analysis of calcifications, detection and analysis of masses and tumors, analysis of bilateral asymmetry, and detection of architectural distortion. Although a few commercial CAD systems have been released, the detection of subtle signs of breast cancer such as global bilateral asymmetry and focal architectural distortion remains a difficult problem. We present some of our recent works on the development of image processing and pattern analysis techniques for these applications.Artigo Científico Gabor filters and phase portraits for the detection of architectural distortion in mammograms(2006) Rangayyan, Rangaraj M.; FABIO JOSE AYRESSegmentation of the tumor in neuroblastoma is complicated by the fact that the mass is almost Always heterogeneous in nature; furthermore, viable Architectural distortion is a subtle abnormality in mammograms, and a source of overlooking errors by radiologists. Computer-aided diagnosis (CAD) techniques can improve the performance of radiologists in detecting masses and calcifications; however, most CAD systems have not been designed to detect architectural distortion. We present a new method to detect and localise architectural distortion by analysing the oriented texture in mammograms. A bank of Gabor filters is used to obtain the orientation field of the given mammogram. The curvilinear structures (CLS) of interest (spicules and fibrous tissue) are separated from confounding structures (pectoral muscle edge, parenchymal tissue edges, breast boundary, and noise). The selected core CLS pixels and the orientation field are filtered and downsampled, to reduce noise and also to reduce the computational effort required by the subsequent methods. The downsampled orientation field is analysed to produce three phase portrait maps: node, saddle, and spiral. The node map is further analysed in order to detect the sites of architectural distortion. The method was tested with 19 mammograms containing architectural distortion. In a preliminary experiment, a sensitivity of 84% was obtained at 7.8 false positives per image.Artigo Científico Effect of Pixel Resolution on Texture Features of Breast Masses in Mammograms(2010) Rangayyan, Rangaraj M.; Nguyen, Thanh M.; FABIO JOSE AYRES; Nandi, Asoke K.The effect of pixel resolution on texture features computed using the gray-level co-occurrence matrix (GLCM) was analyzed in the task of discriminating mammographic breast lesions as benign masses or malignant tumors. Regions in mammograms related to 111 breast masses, including 65 benign masses and 46 malignant tumors, were analyzed at pixel sizes of 50, 100, 200, 400, 600, 800, and 1,000 μm. Classification experiments using each texture feature individually provided accuracy, in terms of the area under the receiver operating characteristics curve (AUC), of up to 0.72. Using the Bayesian classifier and the leave-one-out method, the AUC obtained was in the range 0.73 to 0.75 for the pixel resolutions of 200 to 800 μm, with 14 GLCM-based texture features using adaptive ribbons of pixels around the boundaries of the masses. Texture features computed using the ribbons resulted in higher classification accuracy than the same features computed using the corresponding regions within the mass boundaries. The t test was applied to AUC values obtained using 100 repetitions of random splitting of the texture features from the ribbons of masses into the training and testing sets. The texture features computed with the pixel size of 200 μm provided the highest average AUC with statistically highly significant differences as compared to all of the other pixel sizes tested, except 100 μm.