MACIEL CALEBE VIDAL

Projetos de Pesquisa
Unidades Organizacionais
Resumo profissional
Área de pesquisa
Nome para créditos

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo Científico
    A Software to Compare Clusters between Groups and Its Application to the Study of Autism Spectrum Disorder
    (2017) MACIEL CALEBE VIDAL; Sato, João R.; Balardin, Joana B.; Takahashi, Daniel Y.; Fujita, André
    Understanding how brain activities cluster can help in the diagnosis of neuropsychological disorders. Thus, it is important to be able to identify alterations in the clustering structure of functional brain networks. Here, we provide an R implementation of Analysis of Cluster Variability (ANOCVA), which statistically tests (1) whether a set of brain regions of interest (ROI) are equally clustered between two or more populations and (2) whether the contribution of each ROI to the differences in clustering is significant. To illustrate the usefulness of our method and software, we apply the R package in a large functional magnetic resonance imaging (fMRI) dataset composed of 896 individuals (529 controls and 285 diagnosed with ASD—autism spectrum disorder) collected by the ABIDE (The Autism Brain Imaging Data Exchange) Consortium. Our analysis show that the clustering structure of controls and ASD subjects are different (p < 0.001) and that specific brain regions distributed in the frontotemporal, sensorimotor, visual, cerebellar, and brainstem systems significantly contributed (p < 0.05) to this differential clustering. These findings suggest an atypical organization of domain-specific functionbrain modules in ASD.
  • Artigo Científico
    Identification of alterations associated with age in the clustering structure of functional brain networks
    (2018) Guzman, Grover E. C.; Sato, Joao R.; MACIEL CALEBE VIDAL; Fujita, Andre
    Initial studies using resting-state functional magnetic resonance imaging on the trajectories of the brain network from childhood to adulthood found evidence of functional integration and segregation over time. The comprehension of how healthy individuals’ functional integration and segregation occur is crucial to enhance our understanding of possible deviations that may lead to brain disorders. Recent approaches have focused on the framework wherein the functional brain network is organized into spatially distributed modules that have been associated with specific cognitive functions. Here, we tested the hypothesis that the clustering structure of brain networks evolves during development. To address this hypothesis, we defined a measure of how well a brain region is clustered (network fitness index), and developed a method to evaluate its association with age. Then, we applied this method to a functional magnetic resonance imaging data set composed of 397 males under 31 years of age collected as part of the Autism Brain Imaging Data Exchange Consortium. As results, we identified two brain regions for which the clustering change over time, namely, the left middle temporal gyrus and the left putamen. Since the network fitness index is associated with both integration and segregation, our finding suggests that the identified brain region plays a role in the development of brain systems.