ANDRE FILIPE DE MORAES BATISTA
Projetos de Pesquisa
Unidades Organizacionais
Resumo profissional
Área de pesquisa
Nome para créditos
2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Artigo Científico Cause-specific mortality prediction in older residents of São Paulo, Brazil: a machine learning approach(2021) Nascimento, Carla Ferreira do; Hellen Geremias dos Santos; ANDRE FILIPE DE MORAES BATISTA; Lay, Alejandra Andrea Roman; Duarte, Yeda Aparecida OliveiraBackground: Populational ageing has been increasing in a remarkable rate in developing countries. In this scenario, preventive strategies could help to decrease the burden of higher demands for healthcare services. Machine learning algorithms have been increasingly applied for identifying priority candidates for preventive actions, presenting a better predictive performance than traditional parsimonious models. Methods: Data were collected from the Health, Well Being and Aging (SABE) Study, a representative sample of older residents of São Paulo, Brazil. Machine learning algorithms were applied to predict death by diseases of respiratory system (DRS), diseases of circulatory system (DCS), neoplasms and other specific causes within 5 years, using socioeconomic, demographic and health features. The algorithms were trained in a random sample of 70% of subjects, and then tested in the other 30% unseen data. Results: The outcome with highest predictive performance was death by DRS (AUC−ROC = 0.89), followed by the other specific causes (AUC−ROC = 0.87), DCS (AUC−ROC = 0.67) and neoplasms (AUC−ROC = 0.52). Among only the 25% of individuals with the highest predicted risk of mortality from DRS were included 100% of the actual cases. The machine learning algorithms with the highest predictive performance were light gradient boosted machine and extreme gradient boosting. Conclusion: The algorithms had a high predictive performance for DRS, but lower for DCS and neoplasms. Mortality prediction with machine learning can improve clinical decisions especially regarding targeted preventive measures for older individuals.Artigo Científico Early identification of older individuals at risk of mobility decline with machine learning(2022) Nascimento, Carla Ferreira do; ANDRE FILIPE DE MORAES BATISTA; Duarte, Yeda Aparecida Oliveira; Chiavegatto Filho, Alexandre Dias PortoBackground: : The early identification of individuals at risk of mobility decline can improve targeted strategies of prevention. Aims: : To evaluate the predictive performance of machine learning (ML) algorithms in identifying older in dividuals at risk of future mobility decline. Methods: : We used data from the SABE Study (Health, Well-being and Aging Study), a representative sample of people aged 60 years and more, living in the Municipality of São Paulo, Brazil. Mobility decline was assessed 5 years after admission in the study by self-reported difficulty to walk a block, climb steps, being able to stoop, crouch and kneel, or lifting or carrying weights greater than 5 kg. Popular machine learning algorithms were trained in 70% of the sample with 10-fold cross-validation, and predictive performance metrics were obtained from applying the trained algorithms to the other 30% (test set). Results: : Of the 1,615 individuals, 48% developed difficulty in at least one of the four tasks, 32% in stooping, crouching and kneeling, and 30% in carrying weights. The random forest algorithm had the best predictive performance for most outcomes. The tasks that the algorithm was able to predict with better performance were crouching and kneeling (AUC-ROC: 0.81[0.76–0.85]), and lifting or carrying weights (AUC-ROC: 0.80 [0.75–0.84]). Age was the most important variable for the algorithms, followed by education and back pain, according to the SHAP (SHapley Additive exPlanations) values. Conclusion: : Applications of ML algorithms are a promising tool to identify older patients at risk of mobility decline, with the potential of improving targeted preventive programs.