Particle Learning for Sequential Bayesian Computation

dc.contributor.authorHEDIBERT FREITAS LOPES
dc.contributor.authorJohannes, Michael S.
dc.contributor.authorCarvalho, Carlos M.
dc.contributor.authorPolson, Nicholas G.
dc.coverage.paisReino Unidopt_BR
dc.creatorJohannes, Michael S.
dc.creatorCarvalho, Carlos M.
dc.creatorPolson, Nicholas G.
dc.date.accessioned2022-12-15T18:49:12Z
dc.date.available2022-12-15T18:49:12Z
dc.date.issued2011
dc.description.otherParticle learning provides a simulation-based approach to sequential Bayesian computation. To sample from a posterior distribution of interest we use an essential state vector together with a predictive and propagation rule to build a resampling-sampling framework. Predictive inference and sequential Bayes factors are a direct by-product. Our approach provides a simple yet powerful framework for the construction of sequential posterior sampling strategies for a variety of commonly used models.pt_BR
dc.format.extentp. 317-360pt_BR
dc.format.mediumFísicopt_BR
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/4972
dc.language.isoInglêspt_BR
dc.publisherOxford University Presspt_BR
dc.relation.isreferencedbyBayesian Statisticspt_BR
dc.rights.licenseO INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITORpt_BR
dc.subject.keywordsParticle Learningpt_BR
dc.subject.keywordsBayesianpt_BR
dc.subject.keywordsDynamic Factor Modelspt_BR
dc.subject.keywordsEssential State Vectorpt_BR
dc.subject.keywordsMixture Modelspt_BR
dc.subject.keywordsSequential Inferencept_BR
dc.subject.keywordsConditional Dynamic Linear Modelspt_BR
dc.subject.keywordsNonparametricpt_BR
dc.subject.keywordsDirichletpt_BR
dc.titleParticle Learning for Sequential Bayesian Computationpt_BR
dc.typebook part
dspace.entity.typePublication
local.identifier.sourceUrihttps://books.google.com.br/books?hl=pt-BR&lr=&id=0QJREAAAQBAJ&oi=fnd&pg=PA317&ots=O0E3qzyses&sig=xiwCYMSbHTKZtp01SlveF3QoV3w&redir_esc=y#v=onepage&q&f=false
local.subject.cnpqCiências Exatas e da Terrapt_BR
local.typeCapítulo de Livropt_BR
relation.isAuthorOfPublication41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca
relation.isAuthorOfPublication.latestForDiscovery41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
N/D
Nome:
Capítulo_2011_Particle learning for sequential Bayesian computation.pdf
Tamanho:
135.01 KB
Formato:
Adobe Portable Document Format
Descrição:
Capítulo_2011_Particle learning for sequential Bayesian computation

Licença do pacote

Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
282 B
Formato:
Item-specific license agreed upon to submission
Descrição: