Particle Learning for Sequential Bayesian Computation
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | Johannes, Michael S. | |
dc.contributor.author | Carvalho, Carlos M. | |
dc.contributor.author | Polson, Nicholas G. | |
dc.coverage.pais | Reino Unido | pt_BR |
dc.creator | Johannes, Michael S. | |
dc.creator | Carvalho, Carlos M. | |
dc.creator | Polson, Nicholas G. | |
dc.date.accessioned | 2022-12-15T18:49:12Z | |
dc.date.available | 2022-12-15T18:49:12Z | |
dc.date.issued | 2011 | |
dc.description.other | Particle learning provides a simulation-based approach to sequential Bayesian computation. To sample from a posterior distribution of interest we use an essential state vector together with a predictive and propagation rule to build a resampling-sampling framework. Predictive inference and sequential Bayes factors are a direct by-product. Our approach provides a simple yet powerful framework for the construction of sequential posterior sampling strategies for a variety of commonly used models. | pt_BR |
dc.format.extent | p. 317-360 | pt_BR |
dc.format.medium | Físico | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4972 | |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Oxford University Press | pt_BR |
dc.relation.isreferencedby | Bayesian Statistics | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR | pt_BR |
dc.subject.keywords | Particle Learning | pt_BR |
dc.subject.keywords | Bayesian | pt_BR |
dc.subject.keywords | Dynamic Factor Models | pt_BR |
dc.subject.keywords | Essential State Vector | pt_BR |
dc.subject.keywords | Mixture Models | pt_BR |
dc.subject.keywords | Sequential Inference | pt_BR |
dc.subject.keywords | Conditional Dynamic Linear Models | pt_BR |
dc.subject.keywords | Nonparametric | pt_BR |
dc.subject.keywords | Dirichlet | pt_BR |
dc.title | Particle Learning for Sequential Bayesian Computation | pt_BR |
dc.type | book part | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://books.google.com.br/books?hl=pt-BR&lr=&id=0QJREAAAQBAJ&oi=fnd&pg=PA317&ots=O0E3qzyses&sig=xiwCYMSbHTKZtp01SlveF3QoV3w&redir_esc=y#v=onepage&q&f=false | |
local.subject.cnpq | Ciências Exatas e da Terra | pt_BR |
local.type | Capítulo de Livro | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 1 de 1
N/D
- Nome:
- Capítulo_2011_Particle learning for sequential Bayesian computation.pdf
- Tamanho:
- 135.01 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
- Capítulo_2011_Particle learning for sequential Bayesian computation
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: