Online Bayesian learning in dynamic models: An illustrative introduction to particle methods
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | Carvalho, Carlos M. | |
dc.coverage.pais | Estados Unidos | pt_BR |
dc.creator | Carvalho, Carlos M. | |
dc.date.accessioned | 2022-12-15T19:56:59Z | |
dc.date.available | 2022-12-15T19:56:59Z | |
dc.date.issued | 2013 | |
dc.description.other | This chapter reviews the main advances, over the last two decades, in the particle filter (PF) literature for dynamic models. We focus the discussion around the bootstrap filter (BF) and the auxiliary particle filter (APF), as these are the basis for most of the contributions in the literature. Both filters are then extended to accommodate sequential parameter learning, an area that has gained renewed attention over the last couple of years. The chapter is mainly intended for those researchers and practitioners with little or no practical experience with PF and are looking for a hands-on approach to the subject. With that in mind, we implement and compare the discussed particle filters in two well known contexts: the AR(1) plus noise model and the stochastic volatility model with AR(1) dynamics, or simply SV-AR(1) model. The AR(1) plus noise model is used as a benchmark since all sequential distributions are available in closed-form when parameters are kept fixed. The SV-AR(1) provides an illustration of the ability of PF to deal with traditionally challenging non-linear models. | pt_BR |
dc.format.extent | p. 203-228 | pt_BR |
dc.format.medium | Físico | pt_BR |
dc.identifier.isbn | 198739079 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4975 | |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Oxford University Press | pt_BR |
dc.relation.isreferencedby | Bayesian Theory and Applications | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR | pt_BR |
dc.title | Online Bayesian learning in dynamic models: An illustrative introduction to particle methods | pt_BR |
dc.type | book part | |
dspace.entity.type | Publication | |
local.subject.cnpq | Ciências Exatas e da Terra | pt_BR |
local.type | Capítulo de Livro | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 1 de 1
N/D
- Nome:
- Capítulo_2013_Online Bayesian learning in dynamic models an illustrative[...].pdf
- Tamanho:
- 362.79 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
- Capítulo_2013_Online Bayesian learning in dynamic models an illustrative[...]
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: