Navegando por Autor "Paula, Daniel Abreu Vasconcellos de"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
Artigo Científico Estimating credit and profit scoring of a Brazilian credit union with logistic regression and machine-learning techniques(2019) Paula, Daniel Abreu Vasconcellos de; RINALDO ARTES; Ayres, Fabio; ANDREA MARIA ACCIOLY FONSECA MINARDIPurpose – Although credit unions are nonprofit organizations, their objectives depend on the efficient management of their resources and credit risk aligned with the principles of the cooperative doctrine. This paper aims to propose the combined use of credit scoring and profit scoring to increase the effectiveness of the loan-granting process in credit unions. Design/methodology/approach – This sample is composed by the data of personal loans transactions of a Brazilian credit union. Findings – The analysis reveals that the use of statistical methods improves significantly the predictability of default when compared to the use of subjective techniques and the superiority of the random forests model in estimating credit scoring and profit scoring when compared to logit and ordinary least squares method (OLS) regression. The study also illustrates how both analyses can be used jointly for more effective decision-making. Originality/value – Replacing subjective analysis with objective credit analysis using deterministic models will benefit Brazilian credit unions. The credit decision will be based on the input variables and on clear criteria, turning the decision-making process impartial. The joint use of credit scoring and profit scoring allows granting credit for the clients with the highest potential to pay debt obligation and, at the same time, to certify that the transaction profitability meets the goals of the organization: to be sustainable and to provide loans and investment opportunities at attractive rates to members.Dissertação Modelos para classificação de risco de crédito e previsão de lucratividade em uma cooperativa de crédito(2017) Paula, Daniel Abreu Vasconcellos deO controle do risco de crédito e a oferta de produtos financeiros com taxas acessíveis são fatores de gestão determinantes para a sustentabilidade das cooperativas de crédito. Para obterem vantagem competitiva, estas instituições devem se posicionar no setor bancário apresentando vantagens de custo e acessibilidade. Embora as cooperativas de crédito sejam sociedades sem fins lucrativos, os seus objetivos dependem da gestão eficiente de recursos e do risco de crédito das operações, alinhados com princípios doutrinários do cooperativismo. Modelos de credit scoring e profit scoring são ferramentas que ajudam a melhorar a eficiência das cooperativas de crédito aprimorando a alocação de capital para concessão de empréstimos. Enquanto modelos de credit scoring são concebidos para estimar a probabilidade de default, modelos de profit scoring são concebidos para estimar a lucratividade do cliente com base em fatores comportamentais e demográficos. O presente trabalho aborda estas duas modelagens com a utilização do método de machine learning do tipo random forests e do método tradicional de regressão logística, com base em dados comportamentais e demográficos observados por um período de dois anos e fornecidos por uma cooperativa de crédito localizada no Brasil. Como benefícios esperados pelo uso destas técnicas podem-se citar: a aquisição de conhecimento sobre a lucratividade potencial dos associados, o direcionamento mais eficaz de recursos para segmentos de cooperados com características semelhantes, e a utilização de métodos objetivos para a mitigação de riscos de crédito na decisão de aprovação de novas operações. Os modelos estimados pelo método random forests mostraram-se superiores aos modelos estimados com a regressão logística. Além disso, o trabalho identificou como variáveis preditoras relevantes: modalidade da operação, rating de julgamento subjetivo para risco de crédito, renda, tempo de relacionamento, taxa de juros da operação, histórico de inadimplência e o prazo da operação.