Modelos para classificação de risco de crédito e previsão de lucratividade em uma cooperativa de crédito

Imagem de Miniatura

Autores

Paula, Daniel Abreu Vasconcellos de

Orientador

Co-orientadores

Citações na Scopus

Tipo de documento

Dissertação

Data

2017

Unidades Organizacionais

Resumo

O controle do risco de crédito e a oferta de produtos financeiros com taxas acessíveis são fatores de gestão determinantes para a sustentabilidade das cooperativas de crédito. Para obterem vantagem competitiva, estas instituições devem se posicionar no setor bancário apresentando vantagens de custo e acessibilidade. Embora as cooperativas de crédito sejam sociedades sem fins lucrativos, os seus objetivos dependem da gestão eficiente de recursos e do risco de crédito das operações, alinhados com princípios doutrinários do cooperativismo. Modelos de credit scoring e profit scoring são ferramentas que ajudam a melhorar a eficiência das cooperativas de crédito aprimorando a alocação de capital para concessão de empréstimos. Enquanto modelos de credit scoring são concebidos para estimar a probabilidade de default, modelos de profit scoring são concebidos para estimar a lucratividade do cliente com base em fatores comportamentais e demográficos. O presente trabalho aborda estas duas modelagens com a utilização do método de machine learning do tipo random forests e do método tradicional de regressão logística, com base em dados comportamentais e demográficos observados por um período de dois anos e fornecidos por uma cooperativa de crédito localizada no Brasil. Como benefícios esperados pelo uso destas técnicas podem-se citar: a aquisição de conhecimento sobre a lucratividade potencial dos associados, o direcionamento mais eficaz de recursos para segmentos de cooperados com características semelhantes, e a utilização de métodos objetivos para a mitigação de riscos de crédito na decisão de aprovação de novas operações. Os modelos estimados pelo método random forests mostraram-se superiores aos modelos estimados com a regressão logística. Além disso, o trabalho identificou como variáveis preditoras relevantes: modalidade da operação, rating de julgamento subjetivo para risco de crédito, renda, tempo de relacionamento, taxa de juros da operação, histórico de inadimplência e o prazo da operação.

Palavras-chave

cooperativas de crédito, credit scoring, profit scoring, regressão logística, random forests, machine learning

Titulo de periódico

URL da fonte

Título de Livro

URL na Scopus

Idioma

Português

Notas

Membros da banca

Área do Conhecimento CNPQ

Citação

Avaliação

Revisão

Suplementado Por

Referenciado Por