Iniciação Científica e Tecnológica

URI permanente desta comunidadehttps://repositorio.insper.edu.br/handle/11224/3250

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Imagem de Miniatura
    Relatório de Iniciação Científica
    Estudo de Reinforcement Learning para o Mercado Financeiro
    (2024) Claro, Lucca Oliveira
    O mercado ações é um ambiente complexo e volátil, por isso, encontrar uma estratégia favorável para analisá-lo é um desafio. Neste artigo serão utilizadas estratégias de fusão entre algoritmos de Reinforcement Learning para uma melhor análise desse mercado, visando maximizar o desempenho. Os algoritmos actor-critic, que serão treinados para a estratégia de fusão, são Advantage Actor Critic, Proximal Policy Optimization e Deep Deterministic Policy Gradient. A partir de um treinamento prévio, as fusões buscam priorizar o algoritmo com melhor estabilidade de acordo com as condições do mercado, com o objetivo de deixar o modelo robusto. As fusões são feitas para alcançar um melhor resultado do que os algoritmos individuais. A comparação entre os modelos é feita pelo Índice de Sharpe. O treinamento do modelo será feito pelas ações do Dow Jones e os indicadores técnicos utilizados são: Moving Average Convergence Divergence, Relative Strength Index, Commodity Channel Index e Average Directional Index.