FABIO JOSE AYRES
Projetos de Pesquisa
Unidades Organizacionais
Resumo profissional
Área de pesquisa
Nome para créditos
3 resultados
Resultados de Busca
Agora exibindo 1 - 3 de 3
Artigo Científico Detection of architectural distortion in prior screening mammograms using Gabor filters, phase portraits, fractal dimension, and texture analysis(2008) Rangayyan, Rangaraj M.; Prajna, Shormistha; FABIO JOSE AYRES; Desautels, J. E. LeoObjective Mammography is a widely used screening tool for the early detection of breast cancer. One of the commonly missed signs of breast cancer is architectural distortion. The purpose of this study is to explore the application of fractal analysis and texture measures for the detection of architectural distortion in screening mammograms taken prior to the detection of breast cancer. Materials and methods A method based on Gabor filters and phase portrait analysis was used to detect initial candidates for sites of architectural distortion. A total of 386 regions of interest (ROIs) were automatically obtained from 14 “prior mammograms”, including 21 ROIs related to architectural distortion. From the corresponding set of 14 “detection mammograms”, 398 ROIs were obtained, including 18 related to breast cancer. For each ROI, the fractal dimension and Haralick’s texture features were computed. The fractal dimension of the ROIs was calculated using the circular average power spectrum technique. Results The average fractal dimension of the normal (false-positive) ROIs was significantly higher than that of the ROIs with architectural distortion (p = 0.006). For the “prior mammograms”, the best receiver operating characteristics (ROC) performance achieved, in terms of the area under the ROC curve, was 0.80 with a Bayesian classifier using four features including fractal dimension, entropy, sum entropy, and inverse difference moment. Analysis of the performance of the methods with free-response receiver operating characteristics indicated a sensitivity of 0.79 at 8.4 false positives per image in the detection of sites of architectural distortion in the “prior mammograms”. Conclusion Fractal dimension offers a promising way to detect the presence of architectural distortion in prior mammograms.Artigo Científico Detection of the Optic Nerve Head in Fundus Images of the Retina with Gabor Filters and Phase Portrait Analysis(2010) Rangayyan, Rangaraj M.; Zhu, Xiaolu; FABIO JOSE AYRES; Ells, Anna L.We propose a method using Gabor filters and phase portraits to automatically locate the optic nerve head (ONH) in fundus images of the retina. Because the center of the ONH is at or near the focal point of convergence of the retinal vessels, the method includes detection of the vessels using Gabor filters, detection of peaks in the node map obtained via phase portrait analysis, and an intensity-based condition. The method was tested on 40 images from the Digital Retinal Images for Vessel Extraction (DRIVE) database and 81 images from the Structured Analysis of the Retina (STARE) database. An ophthalmologist independently marked the center of the ONH for evaluation of the results. The evaluation of the results includes free-response receiver operating characteristics (FROC) and a measure of distance between the manually marked and detected centers. With the DRIVE database, the centers of the ONH were detected with an average distance of 0.36 mm (18 pixels) to the corresponding centers marked by the ophthalmologist. FROC analysis indicated a sensitivity of 100% at 2.7 false positives per image. With the STARE database, FROC analysis indicated a sensitivity of 88.9% at 4.6 false positives per image.Artigo Científico Gabor filters and phase portraits for the detection of architectural distortion in mammograms(2006) Rangayyan, Rangaraj M.; FABIO JOSE AYRESSegmentation of the tumor in neuroblastoma is complicated by the fact that the mass is almost Always heterogeneous in nature; furthermore, viable Architectural distortion is a subtle abnormality in mammograms, and a source of overlooking errors by radiologists. Computer-aided diagnosis (CAD) techniques can improve the performance of radiologists in detecting masses and calcifications; however, most CAD systems have not been designed to detect architectural distortion. We present a new method to detect and localise architectural distortion by analysing the oriented texture in mammograms. A bank of Gabor filters is used to obtain the orientation field of the given mammogram. The curvilinear structures (CLS) of interest (spicules and fibrous tissue) are separated from confounding structures (pectoral muscle edge, parenchymal tissue edges, breast boundary, and noise). The selected core CLS pixels and the orientation field are filtered and downsampled, to reduce noise and also to reduce the computational effort required by the subsequent methods. The downsampled orientation field is analysed to produce three phase portrait maps: node, saddle, and spiral. The node map is further analysed in order to detect the sites of architectural distortion. The method was tested with 19 mammograms containing architectural distortion. In a preliminary experiment, a sensitivity of 84% was obtained at 7.8 false positives per image.