HEDIBERT FREITAS LOPES
Projetos de Pesquisa
Unidades Organizacionais
Resumo profissional
Área de pesquisa
Nome para créditos
3 resultados
Resultados de Busca
Agora exibindo 1 - 3 de 3
Artigo Científico Parsimony inducing priors for large scale state–space models(2022) HEDIBERT FREITAS LOPES; McCulloch, Robert E.; Tsay, Ruey S.State–space models are commonly used in the engineering, economic, and statistical literature. They are flexible and encompass many well-known statistical models, including random coefficient autoregressive models and dynamic factor models. Bayesian analysis of state–space models has attracted much interest in recent years. However, for large scale models, prior specification becomes a challenging issue in Bayesian inference. In this paper, we propose a flexible prior for state–space models. The proposed prior is a mixture of four commonly entertained models, yet achieving parsimony in high-dimensional systems. Here ‘‘parsimony’’ is represented by the idea that, in a large system, some states may not be time-varying. Our prior for the state–space component’s standard deviation is capable to accommodate different scenarios. Simulation and simple examples are used throughout this paper to demonstrate the performance of the proposed prior. As an application, we consider the time-varying conditional covariance matrices of daily log returns of the components of the S&P 100 index, leading to a state–space model with roughly five thousand time-varying states. Our model for this large system enables us to use parallel computing.Artigo Científico On the Long-Run Volatility of Stocks(2018) Carvalho, Carlos M.; HEDIBERT FREITAS LOPES; McCulloch, Robert E.In this article, we investigate whether or not the volatility per period of stocks is lower over longer horizons.Taking the perspective of an investor, we evaluate the predictive variance of k-period returns under differentmodel and prior specifications. We adopt the state-space framework of Pástor and Stambaugh to model thedynamics of expected returns and evaluate the effects of prior elicitation in the resulting volatility estimates.Part of the developments includes an extension that incorporates time-varying volatilities and covariancesin a constrained prior information set-up. Our conclusion for the U.S. market, under plausible prior specifi-cations, is that stocks are less volatile in the long run. Model assessment exercises demonstrate the modelsand priors supporting our main conclusions are in accordance with the data. To assess the generality of theresults, we extend our analysis to a number of international equity indices. Supplementary materials for thisarticle are available online.Artigo Científico On the Long-Run Volatility of Stocks(2018) Carvalho, Carlos M.; HEDIBERT FREITAS LOPES; McCulloch, Robert E.