On the Long-Run Volatility of Stocks
Autores
Orientador
Co-orientadores
Citações na Scopus
Tipo de documento
Artigo Científico
Data
2018
Resumo
In this article, we investigate whether or not the volatility per period of stocks is lower over longer horizons.Taking the perspective of an investor, we evaluate the predictive variance of k-period returns under differentmodel and prior specifications. We adopt the state-space framework of Pástor and Stambaugh to model thedynamics of expected returns and evaluate the effects of prior elicitation in the resulting volatility estimates.Part of the developments includes an extension that incorporates time-varying volatilities and covariancesin a constrained prior information set-up. Our conclusion for the U.S. market, under plausible prior specifi-cations, is that stocks are less volatile in the long run. Model assessment exercises demonstrate the modelsand priors supporting our main conclusions are in accordance with the data. To assess the generality of theresults, we extend our analysis to a number of international equity indices. Supplementary materials for thisarticle are available online.
Palavras-chave
Covariance matrix; Dynamic models; Long-run investing; Volatility
Vínculo institucional
Titulo de periódico
Journal of the American Statistical Association
DOI
Título de Livro
URL na Scopus
Idioma
Inglês
Notas
Membros da banca
Área do Conhecimento CNPQ
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
CIENCIAS SOCIAIS APLICADAS::ECONOMIA
CIENCIAS SOCIAIS APLICADAS::ECONOMIA