Cholesky Realized Stochasti Volatility Model
dc.contributor.author | Shirota, Shinichiro | |
dc.contributor.author | Omori, Yashiro | |
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | Piao, Haixiang | |
dc.coverage.cidade | São Paulo | pt_BR |
dc.coverage.pais | Brasil | pt_BR |
dc.creator | Shirota, Shinichiro | |
dc.creator | Omori, Yashiro | |
dc.creator | Piao, Haixiang | |
dc.date.accessioned | 2023-07-20T16:14:54Z | |
dc.date.available | 2023-07-20T16:14:54Z | |
dc.date.issued | 2016 | |
dc.description.abstract | Multivariate stochastic volatility models with leverage are expected to play important roles in financial applications such as asset allocation and risk management. However, these models suffer from two major difficulties: (1) there are too many parameters to estimate using only daily asset returns and (2) estimated covariance matrices are not guaranteed to be positive definite. Our approach takes advantage of realized covariances to attain the efficient estimation of parameters by incorporating additional information for the co-volatilities, and considers Cholesky decomposition to guarantee the positive definiteness of the covariance matrices. In this framework, we propose a flexible modeling for stylized facts of financial markets such as dynamic correlations and leverage effects among volatilities. Taking a Bayesian approach, we describe Markov Chain Monte Carlo implementation with a simple but efficient sampling scheme. Our model is applied to nine U.S. stock returns data, and the model comparison is conducted based on portfolio performances. | |
dc.description.other | Multivariate stochastic volatility models with leverage are expected to play important roles in financial applications such as asset allocation and risk management. However, these models suffer from two major difficulties: (1) there are too many parameters to estimate using only daily asset returns and (2) estimated covariance matrices are not guaranteed to be positive definite. Our approach takes advantage of realized covariances to attain the efficient estimation of parameters by incorporating additional information for the co-volatilities, and considers Cholesky decomposition to guarantee the positive definiteness of the covariance matrices. In this framework, we propose a flexible modeling for stylized facts of financial markets such as dynamic correlations and leverage effects among volatilities. Taking a Bayesian approach, we describe Markov Chain Monte Carlo implementation with a simple but efficient sampling scheme. Our model is applied to nine U.S. stock returns data, and the model comparison is conducted based on portfolio performances | pt_BR |
dc.format.extent | 46 p. | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.issue | BEWP 224/2016 | |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/5895 | |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Insper | pt_BR |
dc.relation.ispartofseries | Insper Working Paper | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DO USUÁRIO VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR | pt_BR |
dc.subject.keywords | Cholesky stochastic volatility model | pt_BR |
dc.subject.keywords | Dynamic correlations | pt_BR |
dc.subject.keywords | Leverage effect | pt_BR |
dc.subject.keywords | Markov chain Monte Carlo | pt_BR |
dc.subject.keywords | Realized covariances | pt_BR |
dc.title | Cholesky Realized Stochasti Volatility Model | pt_BR |
dc.type | working paper | |
dspace.entity.type | Publication | |
local.subject.cnpq | Ciências Exatas e da Terra | pt_BR |
local.type | Working Paper | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 1 de 1
N/D
- Nome:
- BEWP_224_2016_Cholesky_realized_stochasti_volatility_model_TC.pdf
- Tamanho:
- 3.9 MB
- Formato:
- Adobe Portable Document Format