Sequential parameter learning and filtering in structured autoregressive state-space models

dc.contributor.authorPrado, Raquel
dc.contributor.authorHEDIBERT FREITAS LOPES
dc.coverage.cidadeNão informadopt_BR
dc.coverage.paisNão Informadopt_BR
dc.creatorPrado, Raquel
dc.date.accessioned2022-08-19T21:28:54Z
dc.date.available2022-08-19T21:28:54Z
dc.date.issued2013
dc.description.otherWe present particle-based algorithms for sequential filtering and parameter learning in state-space autoregressive (AR) models with structured priors. Non-conjugate priors are specified on the AR coefficients at the system level by imposing uniform or truncated normal priors on the moduli and wavelengths of the reciprocal roots of the AR characteristic polynomial. Sequential Monte Carlo algorithms are considered and implemented for on-line filtering and parameter learning within this modeling framework. More specifically, three SMC approaches are considered and compared by applying them to data simulated from different state-space AR models. An analysis of a human electroencephalogram signal is also presented to illustrate the use of the structured state-space AR models in describing biomedical signals.pt_BR
dc.format.extentp. 43-57pt_BR
dc.format.mediumDigitalpt_BR
dc.identifier.doi10.1007/s11222-011-9289-1pt_BR
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/4062
dc.identifier.volume23pt_BR
dc.language.isoInglêspt_BR
dc.publisherSpringerpt_BR
dc.relation.ispartofStatistics and Computingpt_BR
dc.rights.licenseO INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR.pt_BR
dc.subject.keywordsState-space autoregressionspt_BR
dc.subject.keywordsStructured priorspt_BR
dc.subject.keywordsSequential filtering and parameter learningpt_BR
dc.titleSequential parameter learning and filtering in structured autoregressive state-space modelspt_BR
dc.typejournal article
dspace.entity.typePublication
local.identifier.sourceUrihttps://link.springer.com/article/10.1007/s11222-011-9289-1
local.subject.cnpqCiências Sociais Aplicadaspt_BR
local.typeArtigo Científicopt_BR
relation.isAuthorOfPublication41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca
relation.isAuthorOfPublication.latestForDiscovery41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca

Arquivos

Pacote original

Agora exibindo 1 - 2 de 2
N/D
Nome:
R_Artigo_2013_Sequential parameter learning and filtering in structured_TC.pdf
Tamanho:
1.12 MB
Formato:
Adobe Portable Document Format
Descrição:
R_Artigo_2013_Sequential parameter learning and filtering in structured_TC
Imagem de Miniatura
Nome:
Acesso_Primeira Pagina_Sequential parameter learning and filtering in structured autoregressive state-space models.pdf
Tamanho:
137.15 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
282 B
Formato:
Item-specific license agreed upon to submission
Descrição: