Extended Reality System for Robotic Learning from Human Demonstration

N/D

Autores

Ngui, Isaac
McBeth, Courtney
He, Grace
Santos, André Corrêa
Morales, Marco
Amato, Nancy M.

Orientador

Co-orientadores

Citações na Scopus

Tipo de documento

Trabalho de Evento

Data

2025

Unidades Organizacionais

Resumo

Many real-world tasks are intuitive for a human to perform, but difficult to encode algorithmically when utilizing a robot to perform the tasks. In these scenarios, robotic systems can benefit from expert demonstrations, wherein human operators physically move the robot along trajectories, to learn how to perform each task. In many settings, it may be difficult or unsafe to use a physical robot to provide these demonstrations, for example, considering cooking task such as slicing with a knife. Extended reality provides a natural setting for demonstrating robotic trajectories while bypassing safety concerns and providing a broader range of interaction modalities. We propose the Robot Action Demonstration in Extended Reality (RADER) system, a generic extended reality interface for learning from demonstration. We additionally present its application to an existing state-of-the-art learning from demonstration approach and show comparable results between demonstrations given on a physical robot and those given using our extended reality system.

Palavras-chave

Robotics; Extended reality; Machine learning

Titulo de periódico

DOI

Título de Livro

URL na Scopus

Sinopse

Objetivos de aprendizagem

Idioma

Inglês

Notas

Membros da banca

Área do Conhecimento CNPQ

CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO

Citação

Avaliação

Revisão

Suplementado Por

Referenciado Por