Particle Learning for Fat-Tailed Distributions
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | Polson, Nicholas G. | |
dc.coverage.cidade | Não informado | pt_BR |
dc.coverage.pais | Não Informado | pt_BR |
dc.creator | Polson, Nicholas G. | |
dc.date.accessioned | 2022-08-20T12:36:32Z | |
dc.date.available | 2022-08-20T12:36:32Z | |
dc.date.issued | 2016 | |
dc.description.other | It is well known that parameter estimates and forecasts are sensitive to assumptions about the tail behavior of the error distribution. In this article, we develop an approach to sequential inference that also simultaneously estimates the tail of the accompanying error distribution. Our simulation-based approach models errors with a tν-distribution and, as new data arrives, we sequentially compute the marginal posterior distribution of the tail thickness. Our method naturally incorporates fat-tailed error distributions and can be extended to other data features such as stochastic volatility. We show that the sequential Bayes factor provides an optimal test of fat-tails versus normality. We provide an empirical and theoretical analysis of the rate of learning of tail thickness under a default Jeffreys prior. We illustrate our sequential methodology on the British pound/U.S. dollar daily exchange rate data and on data from the 2008–2009 credit crisis using daily S&P500 returns. Our method naturally extends to multivariate and dynamic panel data. | pt_BR |
dc.format.extent | p. 1666-1691 | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | https://doi.org/10.1080/07474938.2015.1092809 | pt_BR |
dc.identifier.issn | 15324168 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4066 | |
dc.identifier.volume | 35 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Taylor & Francis Group | pt_BR |
dc.relation.isbound | Produção vinculada ao Núcleo de Ciências de Dados e Decisão | |
dc.relation.ispartof | Econometric Reviews | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR. | pt_BR |
dc.subject.keywords | Bayesian inference | pt_BR |
dc.subject.keywords | Credit crisis | pt_BR |
dc.subject.keywords | Dynamic panel data | pt_BR |
dc.subject.keywords | Kullback-Leibler | pt_BR |
dc.subject.keywords | MCMC | pt_BR |
dc.title | Particle Learning for Fat-Tailed Distributions | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://www.tandfonline.com/doi/full/10.1080/07474938.2015.1092809 | |
local.subject.cnpq | Ciências Sociais Aplicadas | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote Original
1 - 2 de 2
N/D
- Nome:
- R_Artigo_2016_Particle Learning for Fat-Tailed Distributions_TC.pdf
- Tamanho:
- 1.85 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2016_Particle Learning for Fat-Tailed Distributions_TC
Carregando...
- Nome:
- Acesso_Primeira Pagina_Particle Learning for Fat-Tailed Distributions.pdf
- Tamanho:
- 67.43 KB
- Formato:
- Adobe Portable Document Format
Licença do Pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: