Efficient sampling for Gaussian linear regression with arbitrary priors

dc.contributor.authorHahn, P. Richard
dc.contributor.authorHe, Jingyu
dc.contributor.authorHEDIBERT FREITAS LOPES
dc.coverage.cidadeNão informadopt_BR
dc.coverage.paisNão Informadopt_BR
dc.creatorHahn, P. Richard
dc.creatorHe, Jingyu
dc.date.accessioned2022-08-23T20:02:56Z
dc.date.available2022-08-23T20:02:56Z
dc.date.issued2018
dc.description.otherThis article develops a slice sampler for Bayesian linear regression models with arbitrary priors. The new sampler has two advantages over current approaches. One, it is faster than many custom implementations that rely on auxiliary latent variables, if the number of regressors is large. Two, it can be used with any prior with a density function that can be evaluated up to a normalizing constant, making it ideal for investigating the properties of new shrinkage priors without having to develop custom sampling algorithms. The new sampler takes advantage of the special structure of the linear regression likelihood, allowing it to produce better effective sample size per second than common alternative approaches.pt_BR
dc.format.extentp. 142-154pt_BR
dc.format.mediumDigitalpt_BR
dc.identifier.doi10.1080/10618600.2018.1482762pt_BR
dc.identifier.issn15372715pt_BR
dc.identifier.issue1pt_BR
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/4099
dc.identifier.volume28pt_BR
dc.language.isoInglêspt_BR
dc.publisherNão informadopt_BR
dc.relation.ispartofJournal of Computational and Graphical Statisticspt_BR
dc.rights.licenseO INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR.pt_BR
dc.subject.keywordsBayesian computationpt_BR
dc.subject.keywordsLinear regressionpt_BR
dc.subject.keywordsShrinkage priorspt_BR
dc.subject.keywordsSlice samplingpt_BR
dc.titleEfficient sampling for Gaussian linear regression with arbitrary priorspt_BR
dc.typejournal article
dspace.entity.typePublication
local.identifier.sourceUrihttps://www.tandfonline.com/doi/full/10.1080/10618600.2018.1482762
local.subject.cnpqCiências Sociais Aplicadaspt_BR
local.typeArtigo Científicopt_BR
relation.isAuthorOfPublication41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca
relation.isAuthorOfPublication.latestForDiscovery41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca

Arquivos

Pacote original

Agora exibindo 1 - 2 de 2
N/D
Nome:
R_Artigo_2018_Efficient sampling for Gaussian linear_TC.pdf
Tamanho:
844.87 KB
Formato:
Adobe Portable Document Format
Descrição:
R_Artigo_2018_Efficient sampling for Gaussian linear_TC
Imagem de Miniatura
Nome:
Acesso_Primeira Pagina_Efficient sampling for Gaussian linear regression with arbitrary priors.pdf
Tamanho:
116.03 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
282 B
Formato:
Item-specific license agreed upon to submission
Descrição: