Particle Filters and Bayesian Inference in Financial Econometrics
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | Tsay, Ruey S. | |
dc.coverage.cidade | Não informado | pt_BR |
dc.coverage.pais | Não Informado | pt_BR |
dc.creator | Tsay, Ruey S. | |
dc.date.accessioned | 2022-10-04T20:13:38Z | |
dc.date.available | 2022-10-04T20:13:38Z | |
dc.date.issued | 2011 | |
dc.description.other | In this paper we review sequential Monte Carlo (SMC) methods, or particle fi lters (PF), with special emphasis on its potential applications in fi nancial time series analysis and econometrics. We start with the well-known normal dynamic linear model, also known as the normal linear state space model, for which sequential state learning is available in closed form via standard Kalman fi lter and Kalman smoother recursions. Particle fi lters are then introduced as a set of Monte Carlo schemes that enable Kalman-type recursions when normality or linearity or both are abandoned. The seminal bootstrap fi lter (BF) of Gordon, Salmond and Smith (1993) is used to introduce the SMC jargon, potentials and limitations. We also review the literature on parameter learning, an area that started to attract much attention from the particle fi lter community in recent years. We give particular attention to the Liu–West fi lter (2001), Storvik fi lter (2002) and particle learning (PL) of Carvalho, Johannes, Lopes and Polson (2010). We argue that the BF and the auxiliary particle fi lter (APF) of Pitt and Shephard (1999) defi ne two fundamentally distinct directions within the particle fi lter lit erature. We also show that the distinction is more pronounced with parameter learning and argue that PL, which follows the APF direction, is an attractive extension. One of our contributions is to sort out the research from BF to APF (during the 1990s), from APF to now (the 2000s) and from Liu–West fi lter to Storvik fi lter to PL. To this end, we provide code in R for all the examples of the paper. Readers are invited to fi nd their own way into this dynamic and active research arena. | pt_BR |
dc.format.extent | p. 168-209 | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | 10.1002/for.1195 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4129 | |
dc.identifier.volume | 30 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | John Wiley & Sons, Ltd. | pt_BR |
dc.relation.ispartof | Journal of Forecasting | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR | pt_BR |
dc.subject.keywords | particle learning | pt_BR |
dc.subject.keywords | sequential Monte Carlo | pt_BR |
dc.subject.keywords | Markov chain Monte Carlo | pt_BR |
dc.subject.keywords | stochastic volatility | pt_BR |
dc.subject.keywords | realized volatility | pt_BR |
dc.subject.keywords | Nelson-Siegel model | pt_BR |
dc.title | Particle Filters and Bayesian Inference in Financial Econometrics | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.subject.cnpq | Ciências Sociais Aplicadas | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 2 de 2
N/D
- Nome:
- R_Artigo_2011_Particle Filters and Bayesian Inference in_TC.pdf
- Tamanho:
- 1.97 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2011_Particle Filters and Bayesian Inference in_TC
- Nome:
- Acesso_Primeira Pagina_Particle Filters and Bayesian Inference in Financial Econometrics.pdf
- Tamanho:
- 38.26 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: