Generalized spatial dynamic factor models
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | Gamerman, Dani | |
dc.contributor.author | Salazar, Esther | |
dc.coverage.cidade | Não informado | pt_BR |
dc.coverage.pais | Não Informado | pt_BR |
dc.creator | Gamerman, Dani | |
dc.creator | Salazar, Esther | |
dc.date.accessioned | 2022-10-04T20:06:22Z | |
dc.date.available | 2022-10-04T20:06:22Z | |
dc.date.issued | 2011 | |
dc.description.other | This paper introduces a new class of spatio-temporal models for measurements belonging to the exponential family of distributions. In this new class, the spatial and temporal components are conditionally independently modeled via a latent factor analysis structure for the (canonical) transformation of the measurements mean function. The factor loadings matrix is responsible for modeling spatial variation, while the common factors are responsible for modeling the temporal variation. One of the main advantages of our model with spatially structured loadings is the possibility of detecting similar regions associated to distinct dynamic factors. We also show that the new class outperforms a large class of spatial-temporal models that are commonly used in the literature. Posterior inference for fixed parameters and dynamic latent factors is performed via a custom tailored Markov chain Monte Carlo scheme for multivariate dynamic systems that combines extended Kalman filter-based Metropolis–Hastings proposal densities with block-sampling schemes. Factor model uncertainty is also fully addressed by a reversible jump Markov chain Monte Carlo algorithm designed to learn about the number of common factors. Three applications, two based on synthetic Gamma and Bernoulli data and one based on real Bernoulli data, are presented in order to illustrate the flexibility and generality of the new class of models, as well as to discuss features of the proposed MCMC algorithm. | pt_BR |
dc.format.extent | p. 1319-1330 | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | https://doi.org/10.1016/j.csda.2010.09.020 | pt_BR |
dc.identifier.issue | 3 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4128 | |
dc.identifier.volume | 55 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Elsevier | pt_BR |
dc.relation.ispartof | Computational Statistics & Data Analysis | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR | pt_BR |
dc.subject.keywords | Exponential family | pt_BR |
dc.subject.keywords | Factor model | pt_BR |
dc.subject.keywords | Gaussian process | pt_BR |
dc.subject.keywords | Markov chain Monte Carlo | pt_BR |
dc.subject.keywords | Reversible jump | pt_BR |
dc.subject.keywords | Sampling schemes | pt_BR |
dc.title | Generalized spatial dynamic factor models | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://www.sciencedirect.com/science/article/pii/S0167947310003634?via%3Dihub | |
local.subject.cnpq | Ciências Sociais Aplicadas | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 2 de 2
N/D
- Nome:
- R_Artigo_2011_Generalized spatial dynamic_TC.pdf
- Tamanho:
- 784.25 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2011_Generalized spatial dynamic_TC
- Nome:
- Acesso_Primeira Pagina_Generalized spatial dynamic factor models.pdf
- Tamanho:
- 175.47 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: