Application of bayesian additive regression trees in the development of credit scoring models in Brazil
dc.contributor.author | RINALDO ARTES | |
dc.contributor.author | Brito Filho, Daniel Alves de | |
dc.coverage.cidade | São Paulo | pt_BR |
dc.coverage.pais | Brasil | pt_BR |
dc.creator | Brito Filho, Daniel Alves de | |
dc.date.accessioned | 2022-08-16T00:17:01Z | |
dc.date.available | 2022-08-16T00:17:01Z | |
dc.date.issued | 2018 | |
dc.description.notes | Texto Completo | pt_BR |
dc.description.other | Paper aims: This paper presents a comparison of the performances of the Bayesian additive regression trees (BART), Random Forest (RF) and the logistic regression model (LRM) for the development of credit scoring models. Originality: It is not usual the use of BART methodology for the analysis of credit scoring data. The database was provided by Serasa-Experian with information regarding direct retail consumer credit operations. The use of credit bureau variables is not usual in academic papers. Research method: Several models were adjusted and their performances were compared by using regular methods. Main findings: The analysis confirms the superiority of the BART model over the LRM for the analyzed data. RF was superior to LRM only for the balanced sample. The best-adjusted BART model was superior to RF. Implications for theory and practice: The paper suggests that the use of BART or RF may bring better results for credit scoring modelling | pt_BR |
dc.format.extent | p. 1-13 | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | https://doi.org/10.1590/0103-6513.20170110 | pt_BR |
dc.identifier.issn | 19805411 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4002 | |
dc.identifier.volume | 28 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Associação Brasileira de Engenharia de Produção | pt_BR |
dc.relation.ispartof | Production | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR | pt_BR |
dc.subject.keywords | Credit | pt_BR |
dc.subject.keywords | Machine learning | pt_BR |
dc.subject.keywords | Logistic regression | pt_BR |
dc.subject.keywords | BART | pt_BR |
dc.subject.keywords | Random Forest | pt_BR |
dc.title | Application of bayesian additive regression trees in the development of credit scoring models in Brazil | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.subject.cnpq | Ciências Exatas e da Terra | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 8b791c94-f3e5-4e04-af26-594195a8f576 | |
relation.isAuthorOfPublication.latestForDiscovery | 8b791c94-f3e5-4e04-af26-594195a8f576 |
Arquivos
Pacote original
1 - 2 de 2
N/D
- Nome:
- R_Artigo_2018_Application of bayesian additive_TC.pdf
- Tamanho:
- 786.31 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2018_Application of bayesian additive_TC
- Nome:
- Acesso_Primeira Pagina_Application of bayesian additive regression trees in the development of credit scoring models in Brazil.pdf
- Tamanho:
- 486.42 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: