Forecasting large realized covariance matrices: the benefits of factor models and shrinkage

Unidades Organizacionais

Resumo

e propose a model to forecast large realized covariance matrices of returns, applying it to the constituents of the S&P 500 daily. To address the curse of dimensionality, we decompose the return covariance matrix using standard firm-level factors (e.g., size, value, and profitability) and use sectoral restrictions in the residual covariance matrix. This restricted model is then estimated using vector heterogeneous autoregressive models with the least absolute shrinkage and selection operator. Our methodology improves forecasting precision relative to standard benchmarks and leads to better estimates of minimum variance portfolios.

Palavras-chave

Titulo de periódico

Journal of Financial Econometrics
DOI

Título de Livro

URL na Scopus

Idioma

en

Notas

Membros da banca

Área do Conhecimento CNPQ

CIENCIAS SOCIAIS APLICADAS

Citação

Avaliação

Revisão

Suplementado Por

Referenciado Por