Shedding Light on How Intelligent Techniques can Support Technical Debt Management and Influence Software Quality Attributes

dc.contributor.authorAlbuquerque, Danyllo
dc.contributor.authorGRAZIELA SIMONE TONIN
dc.contributor.authorChagas, Ferdinandy
dc.contributor.authorPerkusich, Mirko
dc.contributor.authorGuimaraes, Everton
dc.contributor.authorHyggo Almeida
dc.contributor.authorPerkusich, Angelo
dc.creatorAlbuquerque, Danyllo
dc.creatorChagas, Ferdinandy
dc.creatorPerkusich, Mirko
dc.creatorGuimaraes, Everton
dc.creatorHyggo Almeida
dc.creatorPerkusich, Angelo
dc.date.accessioned2025-01-21T22:56:39Z
dc.date.available2025-01-21T22:56:39Z
dc.date.issued2022
dc.description.abstractTechnical Debt (TD) is a consequence of decision-making in the development process that can negatively impact Software Quality Attributes (SQA) in the long term. Technical Debt Management (TDM) is a complex task to minimize TD that relies on a decision process based on multiple and heterogeneous data that are not straightforward to synthesize. Recent studies show that Intelligent Techniques can be a promising opportunity to support TDM activities since they explore data for knowledge discovery, reasoning, learning, or supporting decision-making. Although these techniques can improve TDM activities, there is a need to identify and analyze solutions based on Intelligent Techniques to support TDM activities and their impact on SQA. For doing so, a Systematic Mapping Study was performed, covering publications between 2010 and 2020. From 2276 extracted studies, we selected 111 unique studies. We found a positive trend in applying Intelligent Techniques to support TDM activities being Machine Learning and Reasoning Under Uncertainty the most recurrent ones. Design and Code were the most frequently investigated TD types. TDM activities supported by intelligent techniques impact different characteristics of SQA, mainly Maintainability, Reliability, and Security. Although the research area is up-and-coming, it is still in its infancy, and this study provides a baseline for future research.en
dc.formatDigital
dc.format.extentp. 13-18
dc.identifier.doi10.5753/ise.2022.227051
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/7256
dc.language.isoInglês
dc.publisherSociedade Brasileira de Computação
dc.subjectTechnical Debten
dc.subjectIntelligent Techniquesen
dc.subjectSystematic Mapping Studyen
dc.subjectSoftware Quality Attributesen
dc.titleShedding Light on How Intelligent Techniques can Support Technical Debt Management and Influence Software Quality Attributes
dc.typeconference paper
dspace.entity.typePublication
local.description.eventWorkshop Brasileiro de Engenharia de Software Inteligente (ISE)
local.identifier.sourceUrihttps://sol.sbc.org.br/index.php/ise/article/view/22529
local.publisher.cityPorto Alegre
local.publisher.countryBrasil
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO::ENGENHARIA DE SOFTWARE
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO::SISTEMAS DE INFORMACAO
local.typeTrabalho de Evento
publicationissue.issueNumber2
relation.isAuthorOfPublicationa43937ba-2a28-4a63-9cd3-34427caf7e77
relation.isAuthorOfPublication.latestForDiscoverya43937ba-2a28-4a63-9cd3-34427caf7e77

Arquivos

Pacote original

Agora exibindo 1 - 2 de 2
N/D
Nome:
ACESSO_RESTRITO_Artigo_2022_Shedding_light_on_how_intelligent_techniques_can_support_technical_debt_management_and_influence_software_quality_attributes_T.pdf
Tamanho:
2 MB
Formato:
Adobe Portable Document Format
N/D
Nome:
Primeira_Pagina_Artigo_2022_Shedding_light_on_how_intelligent_techniques_can_support_technical_debt_management_and_influence_software_quality_attributes_T.pdf
Tamanho:
317.44 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
236 B
Formato:
Item-specific license agreed upon to submission
Descrição: