Sequential bayesian learning for stochastic volatility with variance-gamma jumps in return
dc.contributor.author | Warty, Samir P. | |
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | Polson, Nicholas G. | |
dc.coverage.cidade | São Paulo | pt_BR |
dc.coverage.pais | Brasil | pt_BR |
dc.creator | Warty, Samir P. | |
dc.creator | Polson, Nicholas G. | |
dc.date.accessioned | 2023-07-25T19:05:17Z | |
dc.date.available | 2023-07-25T19:05:17Z | |
dc.date.issued | 2014 | |
dc.description.abstract | In this work, we investigate sequential Bayesian estimation for inference of stochastic volatility with variance-gamma jumps in returns (SVVG). We develop an estimation algorithm that adapts the sequential learning auxiliary particle filter proposed by Carvalho, Johannes, Lopes, and Polson (2010) to SVVG. Simulation evidence and empirical estimation results indicate that this approach is able to filter latent variances, identify latent jumps in returns, and provide sequential learning about the static parameters of SVVG. We demonstrate comparative performance of the sequential algorithm and offline Markov Chain Monte Carlo in synthetic and real data applications. | |
dc.description.other | In this work, we investigate sequential Bayesian estimation for inference of stochastic volatility with variance-gamma jumps in returns (SVVG). We develop an estimation algorithm that adapts the sequential learning auxiliary particle filter proposed by Carvalho, Johannes, Lopes, and Polson (2010) to SVVG. Simulation evidence and empirical estimation results indicate that this approach is able to filter latent variances, identify latent jumps in returns, and provide sequential learning about the static parameters of SVVG. We demonstrate comparative performance of the sequential algorithm and offline Markov Chain Monte Carlo in synthetic and real data applications. | pt_BR |
dc.format.extent | 36 p. | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.issue | BEWP 202/2014 | |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/5961 | |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Insper | pt_BR |
dc.relation.ispartofseries | Insper Working Paper | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DO USUÁRIO VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR | pt_BR |
dc.subject.keywords | Auxiliary particle filtering | pt_BR |
dc.subject.keywords | Bayesian learning | pt_BR |
dc.subject.keywords | sequential Monte Carlo | pt_BR |
dc.subject.keywords | stochastic volatility | pt_BR |
dc.subject.keywords | variance gamma | pt_BR |
dc.title | Sequential bayesian learning for stochastic volatility with variance-gamma jumps in return | pt_BR |
dc.type | working paper | |
dspace.entity.type | Publication | |
local.subject.cnpq | Ciências Exatas e da Terra | pt_BR |
local.type | Working Paper | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 1 de 1
N/D
- Nome:
- BEWP_202_2014_Sequential_bayesian_learning_TC.pdf
- Tamanho:
- 1.24 MB
- Formato:
- Adobe Portable Document Format