Sequential bayesian learning for stochastic volatility with variance-gamma jumps in return

dc.contributor.authorWarty, Samir P.
dc.contributor.authorHEDIBERT FREITAS LOPES
dc.contributor.authorPolson, Nicholas G.
dc.coverage.cidadeSão Paulopt_BR
dc.coverage.paisBrasilpt_BR
dc.creatorWarty, Samir P.
dc.creatorPolson, Nicholas G.
dc.date.accessioned2023-07-25T19:05:17Z
dc.date.available2023-07-25T19:05:17Z
dc.date.issued2014
dc.description.abstractIn this work, we investigate sequential Bayesian estimation for inference of stochastic volatility with variance-gamma jumps in returns (SVVG). We develop an estimation algorithm that adapts the sequential learning auxiliary particle filter proposed by Carvalho, Johannes, Lopes, and Polson (2010) to SVVG. Simulation evidence and empirical estimation results indicate that this approach is able to filter latent variances, identify latent jumps in returns, and provide sequential learning about the static parameters of SVVG. We demonstrate comparative performance of the sequential algorithm and offline Markov Chain Monte Carlo in synthetic and real data applications.
dc.description.otherIn this work, we investigate sequential Bayesian estimation for inference of stochastic volatility with variance-gamma jumps in returns (SVVG). We develop an estimation algorithm that adapts the sequential learning auxiliary particle filter proposed by Carvalho, Johannes, Lopes, and Polson (2010) to SVVG. Simulation evidence and empirical estimation results indicate that this approach is able to filter latent variances, identify latent jumps in returns, and provide sequential learning about the static parameters of SVVG. We demonstrate comparative performance of the sequential algorithm and offline Markov Chain Monte Carlo in synthetic and real data applications.pt_BR
dc.format.extent36 p.pt_BR
dc.format.mediumDigitalpt_BR
dc.identifier.issueBEWP 202/2014
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/5961
dc.language.isoInglêspt_BR
dc.publisherInsperpt_BR
dc.relation.ispartofseriesInsper Working Paperpt_BR
dc.rights.licenseO INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DO USUÁRIO VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITORpt_BR
dc.subject.keywordsAuxiliary particle filteringpt_BR
dc.subject.keywordsBayesian learningpt_BR
dc.subject.keywordssequential Monte Carlopt_BR
dc.subject.keywordsstochastic volatilitypt_BR
dc.subject.keywordsvariance gammapt_BR
dc.titleSequential bayesian learning for stochastic volatility with variance-gamma jumps in returnpt_BR
dc.typeworking paper
dspace.entity.typePublication
local.subject.cnpqCiências Exatas e da Terrapt_BR
local.typeWorking Paperpt_BR
relation.isAuthorOfPublication41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca
relation.isAuthorOfPublication.latestForDiscovery41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
N/D
Nome:
BEWP_202_2014_Sequential_bayesian_learning_TC.pdf
Tamanho:
1.24 MB
Formato:
Adobe Portable Document Format