Particle learning for Bayesian semi-parametric stochasticvolatility model

dc.contributor.authorVirbickaitė, Audronė
dc.contributor.authorHEDIBERT FREITAS LOPES
dc.contributor.authorAusín, M. Concepción
dc.contributor.authorGaleano, Pedro
dc.creatorVirbickaitė, Audronė
dc.creatorAusín, M. Concepción
dc.creatorGaleano, Pedro
dc.date.accessioned2024-11-05T18:32:50Z
dc.date.available2024-11-05T18:32:50Z
dc.date.issued2019
dc.description.abstractThis article designs a Sequential Monte Carlo (SMC) algorithm for estimation of Bayesian semi-parametric Stochastic Volatility model for financial data. In particular, it makes use of one of the most recent particle filters called Particle Learning (PL). SMC methods are especially well suited for state-space models and can be seen as a cost-efficient alternative to Markov Chain Monte Carlo (MCMC), since they allow for online type inference. The posterior distributions are updated as new data is observed, which is exceedingly costly using MCMC. Also, PL allows for consistent online model comparison using sequential predictive log Bayes factors. A simulated data is used in order to compare the posterior outputs for the PL and MCMC schemes, which are shown to be almost identical. Finally, a short real data application is included.en
dc.formatDigital
dc.format.extentp. 1007 – 1023
dc.identifier.doi10.1080/07474938.2018.1514022
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/7202
dc.language.isoInglês
dc.relation.isboundProdução vinculada ao Núcleo de Ciências de Dados e Decisão
dc.relation.ispartofEconometric Reviews
dc.subjectBayes factoren
dc.subjectDirichlet Process Mixtureen
dc.subjectMCMCen
dc.subjectSequential Monte Carlopt
dc.titleParticle learning for Bayesian semi-parametric stochasticvolatility model
dc.typejournal article
dspace.entity.typePublication
local.identifier.sourceUrihttps://www.tandfonline.com/doi/full/10.1080/07474938.2018.1514022
local.publisher.countryNão Informado
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::MATEMATICA
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
local.subject.cnpqCIENCIAS SOCIAIS APLICADAS::ECONOMIA
local.subject.cnpqCIENCIAS SOCIAIS APLICADAS::ECONOMIA::METODOS QUANTITATIVOS EM ECONOMIA
local.typeArtigo Científico
publicationissue.issueNumber9
publicationvolume.volumeNumber38
relation.isAuthorOfPublication41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca
relation.isAuthorOfPublication.latestForDiscovery41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca

Arquivos

Pacote original

Agora exibindo 1 - 2 de 2
Imagem de Miniatura
Nome:
Primeira_Pagina_Artigo_2019_Particle_learning_for_bayesian_semi_parametric_stochasticvolatility_model_TC.pdf
Tamanho:
237.64 KB
Formato:
Adobe Portable Document Format
N/D
Nome:
ACESSO_RESTRITO_Artigo_2019_Particle_learning_for_bayesian_semi_parametric_stochasticvolatility_model_TC.pdf
Tamanho:
1.94 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
236 B
Formato:
Item-specific license agreed upon to submission
Descrição: