Particle learning for Bayesian semi-parametric stochasticvolatility model
dc.contributor.author | Virbickaitė, Audronė | |
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | Ausín, M. Concepción | |
dc.contributor.author | Galeano, Pedro | |
dc.creator | Virbickaitė, Audronė | |
dc.creator | Ausín, M. Concepción | |
dc.creator | Galeano, Pedro | |
dc.date.accessioned | 2024-11-05T18:32:50Z | |
dc.date.available | 2024-11-05T18:32:50Z | |
dc.date.issued | 2019 | |
dc.description.abstract | This article designs a Sequential Monte Carlo (SMC) algorithm for estimation of Bayesian semi-parametric Stochastic Volatility model for financial data. In particular, it makes use of one of the most recent particle filters called Particle Learning (PL). SMC methods are especially well suited for state-space models and can be seen as a cost-efficient alternative to Markov Chain Monte Carlo (MCMC), since they allow for online type inference. The posterior distributions are updated as new data is observed, which is exceedingly costly using MCMC. Also, PL allows for consistent online model comparison using sequential predictive log Bayes factors. A simulated data is used in order to compare the posterior outputs for the PL and MCMC schemes, which are shown to be almost identical. Finally, a short real data application is included. | en |
dc.format | Digital | |
dc.format.extent | p. 1007 – 1023 | |
dc.identifier.doi | 10.1080/07474938.2018.1514022 | |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/7202 | |
dc.language.iso | Inglês | |
dc.relation.isbound | Produção vinculada ao Núcleo de Ciências de Dados e Decisão | |
dc.relation.ispartof | Econometric Reviews | |
dc.subject | Bayes factor | en |
dc.subject | Dirichlet Process Mixture | en |
dc.subject | MCMC | en |
dc.subject | Sequential Monte Carlo | pt |
dc.title | Particle learning for Bayesian semi-parametric stochasticvolatility model | |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://www.tandfonline.com/doi/full/10.1080/07474938.2018.1514022 | |
local.publisher.country | Não Informado | |
local.subject.cnpq | CIENCIAS EXATAS E DA TERRA::MATEMATICA | |
local.subject.cnpq | CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA | |
local.subject.cnpq | CIENCIAS SOCIAIS APLICADAS::ECONOMIA | |
local.subject.cnpq | CIENCIAS SOCIAIS APLICADAS::ECONOMIA::METODOS QUANTITATIVOS EM ECONOMIA | |
local.type | Artigo Científico | |
publicationissue.issueNumber | 9 | |
publicationvolume.volumeNumber | 38 | |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 2 de 2
- Nome:
- Primeira_Pagina_Artigo_2019_Particle_learning_for_bayesian_semi_parametric_stochasticvolatility_model_TC.pdf
- Tamanho:
- 237.64 KB
- Formato:
- Adobe Portable Document Format
N/D
- Nome:
- ACESSO_RESTRITO_Artigo_2019_Particle_learning_for_bayesian_semi_parametric_stochasticvolatility_model_TC.pdf
- Tamanho:
- 1.94 MB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 236 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: