The extended Liu and West filter: Parameter learning in Markov switching stochastic volatility models

dc.contributor.authorRios, Maria Paula
dc.contributor.authorHEDIBERT FREITAS LOPES
dc.coverage.cidadeNova Yorkpt_BR
dc.coverage.paisEstados Unidospt_BR
dc.creatorRios, Maria Paula
dc.date.accessioned2022-12-15T20:06:58Z
dc.date.available2022-12-15T20:06:58Z
dc.date.issued2013
dc.description.otherBook cover State-Space Models pp 23–61Cite as The Extended Liu and West Filter: Parameter Learning in Markov Switching Stochastic Volatility Models Maria Paula Rios & Hedibert Freitas Lopes Chapter First Online: 01 January 2013 3249 Accesses 8 Citations Part of the Statistics and Econometrics for Finance book series (SEFF,volume 1) Abstract We explore kernel smoothing and conditional sufficient statistics extensions of the Pitt and Shephard (1999) auxiliary particle and Gordon, Salmond and Smith (1993) bootstrap filters. Using simulated data following Markov Switching Stochastic Volatility models, we show that the LW particle filter degenerates and has the largest Monte Carlo error, while the auxiliary particle filter (APF) + sufficient statistics (SS) outperforms. Our APF + SS filter takes advantage of recursive sufficient statistics that are sequentially tracked and whose behavior resembles that of a latent state with conditionally deterministic updates. The performance of the APF + SS filter is also assessed when exploring its sequential estimation of real data examples.pt_BR
dc.format.extentp. 23-61pt_BR
dc.format.mediumFísicopt_BR
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/4978
dc.language.isoInglêspt_BR
dc.publisherSpringerpt_BR
dc.relation.ispartofseriesStatistics and Econometrics for Financept_BR
dc.relation.isreferencedbyState-Space Modelspt_BR
dc.rights.licenseO INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITORpt_BR
dc.subject.keywordsMean Square Errorpt_BR
dc.subject.keywordsConfidence Bandpt_BR
dc.subject.keywordsStochastic Volatility Modelpt_BR
dc.subject.keywordsSequential Monte Carlopt_BR
dc.subject.keywordsKernel Smoothingpt_BR
dc.titleThe extended Liu and West filter: Parameter learning in Markov switching stochastic volatility modelspt_BR
dc.typebook part
dspace.entity.typePublication
local.identifier.sourceUrihttps://link.springer.com/chapter/10.1007/978-1-4614-7789-1_2
local.subject.cnpqCiências Sociais Aplicadaspt_BR
local.typeCapítulo de Livropt_BR
relation.isAuthorOfPublication41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca
relation.isAuthorOfPublication.latestForDiscovery41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
N/D
Nome:
Capítulo_2013_The Extended Liu and West Filter.pdf
Tamanho:
364.69 KB
Formato:
Adobe Portable Document Format
Descrição:
Capítulo_2013_The Extended Liu and West Filter

Licença do pacote

Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
282 B
Formato:
Item-specific license agreed upon to submission
Descrição: