Machine Learning Methods in Asset Pricing: An Analysis of Cross-sectional Stock Returns with Macroeconomic Factors in Brazil

dc.contributor.advisorGUSTAVO BARBOSA SOARES
dc.contributor.authorVieira, Emerson Sousa
dc.date.accessioned2025-04-12T18:52:48Z
dc.date.issued2025
dc.description.abstractThe literature on financial machine learning has growth rapidly with studies encompassing several asset classes, chiefly for the stock market. We apply machine learning methods to Brazilian stocks cross section of monthly excess returns by using Brazilian stock factors while adding a vast set macroeconomic ones as our research primary contribution, for which the literature on Brazilian equities is scarce. We confirm recent results that ML models drive a substantial improvement in out-of-sample R2 predictive power over traditional OLS models. Running an out-of-sample variable importance analysis, we also found macroeconomic factors overweight firm-related ones, with a slight predominance of country risk (EMBI Brazil Index), followed by the expectations of economics conditions, and Brazil’s commodities composite index, and credit-to-GDP ratio. Our findings suggest a high relevance of macroeconomic factors when predicting monthly excess returns for Brazilian stocksen
dc.formatDigital
dc.format.extent45 p.
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/7576
dc.language.isoInglês
dc.subjectBrazilian stocksen
dc.subjectempirical asset pricingen
dc.subjectmacroeconomic factorsen
dc.subjectmachine learning methodsen
dc.titleMachine Learning Methods in Asset Pricing: An Analysis of Cross-sectional Stock Returns with Macroeconomic Factors in Brazil
dc.typemaster thesis
dspace.entity.typePublication
local.contributor.boardmemberGUSTAVO BARBOSA SOARES
local.contributor.boardmemberRUY MONTEIRO RIBEIRO
local.contributor.boardmemberBERNARDO DE OLIVEIRA GUERRA RICCA
local.contributor.boardmemberMoraes, Fernando Tassinari
local.subject.cnpqCIENCIAS SOCIAIS APLICADAS
local.subject.cnpqCIENCIAS SOCIAIS APLICADAS::ECONOMIA
local.typeDissertação
relation.isAdvisorOfPublication8a7b5a9c-5615-4623-bfcb-b67ed3f6008f
relation.isAdvisorOfPublication.latestForDiscovery8a7b5a9c-5615-4623-bfcb-b67ed3f6008f
relation.isBoardMemberOfPublication8a7b5a9c-5615-4623-bfcb-b67ed3f6008f
relation.isBoardMemberOfPublication252786e6-ae76-41a8-8878-1c71bc135f79
relation.isBoardMemberOfPublication4dce0df5-dad1-4a82-8586-44b30a3a4233
relation.isBoardMemberOfPublication.latestForDiscovery8a7b5a9c-5615-4623-bfcb-b67ed3f6008f

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
N/D
Nome:
Emerson Sousa Vieira_Trabalho.pdf
Tamanho:
2.71 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
236 B
Formato:
Item-specific license agreed upon to submission
Descrição: