Sequential bayesian learning for stochastic volatility with variance-gamma jumps in return

N/D

Autores

Warty, Samir P.
Polson, Nicholas G.

Orientador

Co-orientadores

Citações na Scopus

Tipo de documento

Working Paper

Data

2014

Unidades Organizacionais

Resumo

In this work, we investigate sequential Bayesian estimation for inference of stochastic volatility with variance-gamma jumps in returns (SVVG). We develop an estimation algorithm that adapts the sequential learning auxiliary particle filter proposed by Carvalho, Johannes, Lopes, and Polson (2010) to SVVG. Simulation evidence and empirical estimation results indicate that this approach is able to filter latent variances, identify latent jumps in returns, and provide sequential learning about the static parameters of SVVG. We demonstrate comparative performance of the sequential algorithm and offline Markov Chain Monte Carlo in synthetic and real data applications.

Palavras-chave

Titulo de periódico

URL da fonte

Título de Livro

URL na Scopus

Idioma

Inglês

Notas

Membros da banca

Área do Conhecimento CNPQ

Ciências Exatas e da Terra

Citação

Avaliação

Revisão

Suplementado Por

Referenciado Por