Sequential bayesian learning for stochastic volatility with variance-gamma jumps in return
N/D
Autores
Orientador
Co-orientadores
Citações na Scopus
Tipo de documento
Working Paper
Data
2014
Resumo
In this work, we investigate sequential Bayesian estimation for inference
of stochastic volatility with variance-gamma jumps in returns (SVVG). We develop an estimation algorithm that adapts the sequential learning auxiliary particle filter proposed by Carvalho, Johannes, Lopes, and Polson (2010) to SVVG. Simulation evidence and empirical estimation results indicate that this approach is able to filter latent variances, identify latent jumps in returns, and provide sequential learning about the static parameters of SVVG. We demonstrate comparative performance of the sequential algorithm and offline Markov Chain Monte Carlo in synthetic and real data applications.
Palavras-chave
Titulo de periódico
URL da fonte
Título de Livro
URL na Scopus
Idioma
Inglês
Notas
Membros da banca
Área do Conhecimento CNPQ
Ciências Exatas e da Terra