Coleção de Artigos Acadêmicos
URI permanente para esta coleçãohttps://repositorio.insper.edu.br/handle/11224/3227
Navegar
6 resultados
Resultados da Pesquisa
Artigo Científico Identification of segregated regions in the functional brain connectome of autistic patients by a combination of fuzzy spectral clustering and entropy analysis(2016) Sato, João Ricardo; Balardin, Joana; MACIEL CALEBE VIDAL; André FujitaBackground: Several neuroimaging studies support the model of abnormal development of brain connectivity in patients with autism-spectrum disorders (ASD). In this study, we aimed to test the hypothesis of reduced functional network segregation in autistic patients compared with controls. Methods: Functional MRI data from children acquired under a resting-state protocol (Autism Brain Imaging Data Exchange [ABIDE]) were submitted to both fuzzy spectral clustering (FSC) with entropy analysis and graph modularity analysis. Results: We included data from 814 children in our analysis. We identified 5 regions of interest comprising the motor, temporal and occipito-temporal cortices with increased entropy (p < 0.05) in the clustering structure (i.e., more segregation in the controls). Moreover, we noticed a statistically reduced modularity (p < 0.001) in the autistic patients compared with the controls. Significantly reduced eigenvector centrality values (p < 0.05) in the patients were observed in the same regions that were identified in the FSC analysis. Limitations: There is considerable heterogeneity in the fMRI acquisition protocols among the sites that contributed to the ABIDE data set (e.g., scanner type, pulse sequence, duration of scan and resting-state protocol). Moreover, the sites differed in many variables related to sample characterization (e.g., age, IQ and ASD diagnostic criteria). Therefore, we cannot rule out the possibility that additional differences in functional network organization would be found in a more homogeneous data sample of individuals with ASD. Conclusion: Our results suggest that the organization of the whole-brain functional network in patients with ASD is different from that observed in controls, which implies a reduced modularity of the brain functional networks involved in sensorimotor, social, affective and cognitive processing.Artigo Científico A Statistical Method to Distinguish Functional Brain Networks(2017) Fujita, André; MACIEL CALEBE VIDAL; Takahashi, Daniel Y.One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism (p < 0.001).Artigo Científico Correlation between graphs with an application to brain network analysis(2017) Fujita, André; Takahashi, Daniel Yasumasa; Balardin, Joana Bisol; MACIEL CALEBE VIDAL; Sato, João RicardoThe global functional brain network (graph) is more suitable for characterizing brain states than local analysis of the connectivity of brain regions. Therefore, graph-theoretic approaches are natural methods to use for studying the brain. However, conventional graph theoretical analyses are limited due to the lack of formal statistical methods of estimation and inference. For example, the concept of correlation between two vectors of graphs has not yet been defined. Thus, the introduction of a notion of correlation between graphs becomes necessary to better understand how brain sub-networks interact. To develop a framework to infer correlation between graphs, one may assume that they are generated by models and that the parameters of the models are the random variables. Then, it is possible to define that two graphs are independent when the random variables representing their parameters are independent. In the real world, however, the model is rarely known, and consequently, the parameters cannot be estimated. By analyzing the graph spectrum, it is shown that the spectral radius is highly associated with the parameters of the graph model. Based on this, a framework for correlation inference between graphs is constructed and the approach illustrated on functional magnetic resonance imaging data on 814 subjects comprising 529 controls and 285 individuals diagnosed with autism spectrum disorder (ASD). Results show that correlations between the default-mode and control, default-mode and somatomotor, and default-mode and visual sub-networks are higher in individuals with ASD than in the controls.Artigo Científico A Software to Compare Clusters between Groups and Its Application to the Study of Autism Spectrum Disorder(2017) MACIEL CALEBE VIDAL; Sato, João R.; Balardin, Joana B.; Takahashi, Daniel Y.; Fujita, AndréUnderstanding how brain activities cluster can help in the diagnosis of neuropsychological disorders. Thus, it is important to be able to identify alterations in the clustering structure of functional brain networks. Here, we provide an R implementation of Analysis of Cluster Variability (ANOCVA), which statistically tests (1) whether a set of brain regions of interest (ROI) are equally clustered between two or more populations and (2) whether the contribution of each ROI to the differences in clustering is significant. To illustrate the usefulness of our method and software, we apply the R package in a large functional magnetic resonance imaging (fMRI) dataset composed of 896 individuals (529 controls and 285 diagnosed with ASD—autism spectrum disorder) collected by the ABIDE (The Autism Brain Imaging Data Exchange) Consortium. Our analysis show that the clustering structure of controls and ASD subjects are different (p < 0.001) and that specific brain regions distributed in the frontotemporal, sensorimotor, visual, cerebellar, and brainstem systems significantly contributed (p < 0.05) to this differential clustering. These findings suggest an atypical organization of domain-specific functionbrain modules in ASD.Artigo Científico Identification of alterations associated with age in the clustering structure of functional brain networks(2018) Guzman, Grover E. C.; Sato, Joao R.; MACIEL CALEBE VIDAL; Fujita, AndreInitial studies using resting-state functional magnetic resonance imaging on the trajectories of the brain network from childhood to adulthood found evidence of functional integration and segregation over time. The comprehension of how healthy individuals’ functional integration and segregation occur is crucial to enhance our understanding of possible deviations that may lead to brain disorders. Recent approaches have focused on the framework wherein the functional brain network is organized into spatially distributed modules that have been associated with specific cognitive functions. Here, we tested the hypothesis that the clustering structure of brain networks evolves during development. To address this hypothesis, we defined a measure of how well a brain region is clustered (network fitness index), and developed a method to evaluate its association with age. Then, we applied this method to a functional magnetic resonance imaging data set composed of 397 males under 31 years of age collected as part of the Autism Brain Imaging Data Exchange Consortium. As results, we identified two brain regions for which the clustering change over time, namely, the left middle temporal gyrus and the left putamen. Since the network fitness index is associated with both integration and segregation, our finding suggests that the identified brain region plays a role in the development of brain systems.Artigo Científico Granger Causality among Graphs and Application to Functional Brain Connectivity in Autism Spectrum Disorder(2021) Ribeiro, Adèle Helena; MACIEL CALEBE VIDAL; Sato, João Ricardo; Fujita, AndréGraphs/networks have become a powerful analytical approach for data modeling. Besides, with the advances in sensor technology, dynamic time-evolving data have become more common. In this context, one point of interest is a better understanding of the information flow within and between networks. Thus, we aim to infer Granger causality (G-causality) between networks’ time series. In this case, the straightforward application of the well-established vector autoregressive model is not feasible. Consequently, we require a theoretical framework for modeling time-varying graphs. One possibility would be to consider a mathematical graph model with time-varying parameters (assumed to be random variables) that generates the network. Suppose we identify G-causality between the graph models’ parameters. In that case, we could use it to define a G-causality between graphs. Here, we show that even if the model is unknown, the spectral radius is a reasonable estimate of some random graph model parameters. We illustrate our proposal’s application to study the relationship between brain hemispheres of controls and children diagnosed with Autism Spectrum Disorder (ASD). We show that the G-causality intensity from the brain’s right to the left hemisphere is different between ASD and controls.