Graduações em Engenharias e Ciência da Computação

URI permanente para esta coleçãohttps://repositorio.insper.edu.br/handle/11224/3249

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Financial Data Synthesis and Analysis in Open Finance
    (2023) Souza, Ana Carolina Leal Garcia de; Rodrigues, Bruno Freitas do Nascimento; Cho, Nicolas Byung Kwan; Rocha, Thiago Hampl de Pierri
    O projeto em questão tem como objetivo desenvolver uma análise comportamental de clientes bancários em um ambiente de Open Finance simulado. Desta forma, o projeto busca compreender sobre a possibilidade de extrair métricas em relação aos clientes, como score de crédito, considerando os dados compartilhados entre instituições financeiras. Levando em conta a indisponibilidade de dados bancários reais, vê-se a necessidade de aplicação de técnicas de geração de dados para uma etapa inicial do projeto, seguida da definição das métricas relevantes e posterior análise envolvendo tanto uma abordagem estatística clássica quanto a utilização de aprendizado de máquina, a exemplo de um modelo de processamento de linguagem natural para dados textuais contidos em extratos bancários. Ao final, espera-se a criação de um dashboard com os insights julgados como relevantes, integrado em um pipeline em Docker, como um produto final.
  • Imagem de Miniatura
    Trabalho de Conclusão de Curso
    Detecção de Bugs em Modelos de Machine Learning
    (2022) Santos, Giovanni Cardoso Pertence dos; Andrade, João Pedro Gianfaldoni de; Silva, William Augusto Reis da
    Modelos de Machine Learning em produção muitas vezes apresentam comportamentos inesperados, que não foram detectados durante as etapas de treino, teste e validação, ao serem expostos a dados do mundo real. Esses comportamentos inesperados, ou “bugs” do modelo, ocorrem por diferentes motivos, como o não cumprimento de regras de negócio, dados de treino rotulados incorretamente e generalizações errôneas do próprio modelo. Este projeto tem como objetivo desenvolver uma biblioteca de Machine Learning explainability, open source, na linguagem de programação Python, que seja capaz de realizar diagnósticos e produzir relatórios que identifiquem esses bugs e comportamentos inesperados, permitindo assim que o cliente IFOOD, ou qualquer outro usuário da biblioteca, os corrija. Essa biblioteca poderá ser utilizada em modelos de classificação binária, na forma de “caixa-preta”, que foram treinados com dados tabulares.