Graduações em Engenharias e Ciência da Computação

URI permanente para esta coleçãohttps://repositorio.insper.edu.br/handle/11224/3249

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Trabalho de Conclusão de Curso
    Identification of Flooding Incident Impacts Using Neural Networks
    (2024) Santos, Alexandre Magno Maciel dos; Vaz, Eduardo Mendes; Cadorniga, João Lucas de Moraes Barros; Pertusi, Pedro Vaz de Moraes
    In a world where flooding impacts are becoming increasingly common, such as the disaster in the Brazilian state of Rio Grande do Sul in 2024, the goal of this project is to develop an open-source flooding impact assessment pipeline. Preliminary technical evaluation by NVIDIA indicates that this tool could be integrated with technologies such as a flood simulation system, allowing for predictions in susceptible regions. The pipeline utilizes Convolutional Neural Networks (CNN), public population, and geographic data to process images extracted from the Sentinel-1 and Sentinel-2 satellites and generate metrics. This project classifies flooded regions prior to and after a crisis, providing, for example, estimations of the affected population by area to showcase the impact to assist urban planning professionals. The developed tool integrates a satellite data collection system from these satellites, as they are also open-source and include periodical data, and the CNNs in an intuitive and easily utilizable pipeline, inspired by UNOSAT’s Emergency Mapping which analyzed the impact of floodings in Nepal in 2021. Keywords: