Graduações em Engenharias e Ciência da Computação

URI permanente para esta coleçãohttps://repositorio.insper.edu.br/handle/11224/3249

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 1 de 1
  • Imagem de Miniatura
    Trabalho de Conclusão de Curso
    Solução Full-Stack de machine learning para Visão Computacional em Ambientes Industriais: Classificação, Versionamento e Treinamento Local de Modelos
    (2025) Machado, Diego Baptista Daurea; Celestino, Douglas Pablo Braçal; Silva, Gustavo Mendes da; Rizzo, Pedro Ivo de
    Este projeto dedica-se a estabelecer uma solução full-stack de machine learning para algoritmos de visão computacional, com versionamento, reclassificação e retreinamento de modelos, operando integralmente via Intranet para facilitar seu uso em plantas industriais. Tal abordagem visa atender qualquer processo, permitindo ao usuário realizar o upload de mídias, escolher as Labels que deseja classificar e anotar manualmente bounding boxes para rotulagem supervisionada e depois treinamento e retreinamento de modelos de visão computacional com as mídias rotuladas. Para isso, empregou-se Python e o modelo de detecção de objetos YOLO, associadas a um fluxo de versionamento (DVC/Git) que permite realimentar o modelo conforme surgem correções manuais de classificação. O frontend foi desenvolvido utilizando Next.js e Node.js, proporcionando uma interface interativa e eficiente para interação com os modelos. Além disso, toda a arquitetura foi dockerizada utilizando Docker, garantindo portabilidade, escalabilidade e facilidade de implantação em ambientes industriais. O resultado é um sistema robusto que permite evolução dos modelos e datasets sem depender de soluções em nuvem, garantindo escalabilidade e adequação às necessidades industriais locais.