Graduações em Engenharias e Ciência da Computação

URI permanente para esta coleçãohttps://repositorio.insper.edu.br/handle/11224/3249

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Trabalho de Conclusão de Curso
    Inteligência artificial para escalar vendas e resultados
    (2024) Fonteyne, Enzo; Tanaka, Livia; Costa, Lucca Hiratsuca; Lazzaron, Luiz Felipe
    Este artigo apresenta o desenvolvimento de uma ferramenta baseada em IA projetada para aumentar a produtividade de equipes de vendas B2B, auxiliando na criação e avaliação de propostas comerciais. A solução, desenvolvida como parte de uma colaboração entre estudantes do Insper e uma empresa de tecnologia brasileira, utiliza IA para automatizar e otimizar diversos aspectos do processo de vendas. A ferramenta proposta integra-se com apresentações já estabelecidas e utiliza modelos de IA generativa para fornecer insights e sugestões, aprimorando a estrutura, clareza e relevância das propostas comerciais. A arquitetura da ferramenta é construída usando o framework LangChain, permitindo a integração de múltiplos modelos de linguagem e a implementação de técnicas avançadas de processamento de linguagem natural, incluindo RAG (Geração Aumentada por Recuperação) e ReACT (Framework de Raciocínio e Ação). A eficácia da solução foi validada por meio de protótipos e entrevistas com partes interessadas, confirmando seu potencial para impactar significativamente a qualidade das propostas e os resultados de vendas.
  • Imagem de Miniatura
    Trabalho de Conclusão de Curso
    Uso de IA para sistema de orientação e guiagem para pouso de sistemas autônomos de um VANT
    (2024) Ogawa, Alessandra Yumi Carvalho; Zamberlan, Enzo Dadier Lacks; Oliveira, Mateus Ruggero de; Gallo, Vinicius
    Este projeto visa o desenvolvimento de um sistema de guiagem autônomo para pouso de um VANT (Veículo Aéreo Não Tripulado) cargueiro, utilizando inteligência artificial e visão computacional. O software Unreal Engine 5 será empregado como ambiente de simulação e desenvolvimento, permitindo tanto o treinamento quanto a visualização dos resultados do algoritmo criado. A metodologia ágil Scrum foi adotada para definir entregáveis periódicos, enquanto a abordagem V&V (Verificação e Validação) é utilizada para organizar as etapas e assegurar a conformidade com os requisitos. Atualmente, o projeto encontra-se na fase de definição e validação de requisitos, caminhando para a etapa de Test Readiness Review (TRR). Ao final do desenvolvimento, o algoritmo de inteligência artificial, criado a partir da YOLOv3, foi capaz de identificar áreas possíveis para pouso levando em conta diversos requisitos com ótima precisão. Além disso, as rotinas de waypoints, fail-safe, detecção de obstáculos e movimentação para locais alternativos de pouso, simula adequadamente condições reais propostas.