Dissertação de Mestrado
URI permanente desta comunidadehttps://repositorio.insper.edu.br/handle/11224/3237
Navegar
2 resultados
Resultados da Pesquisa
Dissertação Previsão através de técnicas de machine learning de períodos risk-off no Brasil(2022) Fernandes, Carlos Vinícius CotrimEste artigo utiliza técnicas de machine learning como K-médias e clusters hierárquicos e o comovimento dos principais ativos financeiros brasileiros ligados aos mercados de juros, câmbio e renda variável para identificar períodos popularmente conhecidos como risk-on e risk-off no Brasil. Após identificar os períodos, busco prevê-los com o uso de diversas variáveis macroeconômicas em defasagens de três, seis e doze meses com relação aos períodos encontrados e Random Forests. Aqui temos a contribuição relevante de variáveis não frequentemente utilizadas para previsões como dados de emprego e índices de preços. Por fim, realizo simulações de carteiras com os ativos brasileiros e as previsões obtidas, buscando mostrar uma aplicação possível para os períodos risk-off encontrados e as previsões das Random Forests, nessas simulações temos ganho de rentabilidade independente da defasagem em relação ao portfólio 60/40 e ganho de rentabilidade das defasagens 6 e 12 meses em relação ao CDIDissertação Aplicação de árvores de regressão aditivas bayesianas no desenvolvimento de modelos de escore de crédito no Brasil(2016) Brito Filho, Daniel Alves DeA análise de crédito é uma atividade fundamental para as instituições financeiras. Os modelos de escore de crédito tornaram-se uma ferramenta importante, devido à necessidade de padronização e agilidade nas análises de crédito, existindo situações em que a aprovação ou recusa do crédito é totalmente automatizada. Segundo Thomas (2009), a técnica mais utilizada na construção de modelos de escore de crédito é a regressão logística. Por outro lado, outras técnicas, reunidas sob o termo aprendizado de máquina, têm sido aplicadas em modelos de classificação. Como podemos observar em Kruppa et al. (2013) e Lessmann et al. (2015), esses modelos têm apresentado resultados superiores aos modelos de regressão logística. Este trabalho propõe uma comparação entre o modelo de regressão logística e os modelos de aprendizado de máquina BART e Random Forests. Para o desenvolvimento dos modelos foi utilizada uma base de dados fornecida pela empresa Serasa Experian contendo informações do bureau de crédito referente a clientes de operações de crédito direto ao consumidor no varejo. Para a avaliação da performance dos modelos foram utilizadas a estatística de Kolmogorov-Smirnov e o coeficiente de Gini. Também foi gerado um intervalo de confiança para a métrica área sob a curva (AUC) para testar a hipótese dos modelos possuírem a mesma performance. Como principal resultado, a análise realizada confirma a superioridade do modelo BART sobre o modelo de regressão logística no banco de dados analisado. Além disso, os resultados sugerem que o modelo Random Forests é superior ao modelo de regressão logística somente quando ajustado na amostra balanceada analisada, dado que a performance da regressão logística melhorou quanto ajustado na base de desenvolvimento desbalanceada. Os melhores modelos BART ajustados, tanto na amostra balanceada quanto na amostra desbalanceada, foram superiores ao modelo Random Forests, nos dados analisados. Porém, o modelo BART padrão e Random Forests apresentaram performance similar e não podemos afirmar que um modelo foi superior ao outro.