Spatial dependence in credit risk and its improvement in credit scoring
dc.contributor.author | RINALDO ARTES | |
dc.contributor.author | Fernandes, Guilherme Barreto | |
dc.coverage.pais | Não Informado | pt_BR |
dc.creator | Fernandes, Guilherme Barreto | |
dc.date.accessioned | 2022-08-15T14:50:12Z | |
dc.date.available | 2022-08-15T14:50:12Z | |
dc.date.issued | 2016 | |
dc.description.notes | Texto completo | pt_BR |
dc.description.other | Credit scoring models are important tools in the credit granting process. These models measure the credit risk of a prospective client based on idiosyncratic variables and macroeconomic factors. However, small and medium sized enterprises (SMEs) are subject to the effects of the local economy. From a data set with the localization and default information of 9 million Brazilian SMEs, provided by Serasa Experian (the largest Brazilian credit bureau), we propose a measure of the local risk of default based on the application of ordinary kriging. This variable has been included in logistic credit scoring models as an explanatory variable. These models have shown better performance when compared to models without this variable. A gain around 7 percentage points of KS and Gini was observed. | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | http://dx.doi.org/10.1016/j.ejor.2015.07.013 | pt_BR |
dc.identifier.issn | 3772217 | pt_BR |
dc.identifier.issue | 249 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/3989 | |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Elsevier | pt_BR |
dc.relation.ispartof | European Journal of Operational Research | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR | pt_BR |
dc.subject.keywords | Risk analysis | pt_BR |
dc.subject.keywords | Spatial dependence | pt_BR |
dc.subject.keywords | SME credit risk | pt_BR |
dc.subject.keywords | Credit scoring | pt_BR |
dc.subject.keywords | Ordinary kriging | pt_BR |
dc.title | Spatial dependence in credit risk and its improvement in credit scoring | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://www.sciencedirect.com/science/article/pii/S0377221715006463 | |
local.subject.cnpq | Ciências Exatas e da Terra | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 8b791c94-f3e5-4e04-af26-594195a8f576 | |
relation.isAuthorOfPublication.latestForDiscovery | 8b791c94-f3e5-4e04-af26-594195a8f576 |
Arquivos
Pacote Original
1 - 1 de 1
N/D
- Nome:
- R_Artigo_2016_A comparison of strategies to develop_tc.pdf
- Tamanho:
- 308.3 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2016_A comparison of strategies to develop_tc
Licença do Pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: