Minimum distance estimation of search costs using price distribution
dc.contributor.author | FABIO ADRIANO MIESSI SANCHES | |
dc.contributor.author | Silva Junior, Daniel | |
dc.contributor.author | Srisuma, Sorawoot | |
dc.coverage.pais | Não Informado | pt_BR |
dc.creator | Silva Junior, Daniel | |
dc.creator | Srisuma, Sorawoot | |
dc.date.accessioned | 2022-11-11T14:23:24Z | |
dc.date.available | 2022-11-11T14:23:24Z | |
dc.date.issued | 2018 | |
dc.description.other | It has been shown that equilibrium restrictions in a search model can be used to identify quantiles of the search cost distribution from observedprices alone. These quantiles can be difficult to estimate in practice. This article uses a minimum distance approach to estimate them that is easy to compute. A version of our estimator is a solution to a nonlinear least-square problem that can be straightforwardly programmed on softwares such as STATA. We show our estimator is consistent and has an asymptotic normal distribution. Its distribution can be consistently estimated by a bootstrap. Our estimator can be used to estimate the cost distribution nonparametrically on a larger support when prices from heterogenous markets are available.We propose a two-step sieve estimator for that case. The first step estimates quantiles from each market. They are used in the second step as generated variables to perform nonparametric sieve estimation. We derive the uniform rate of convergence of the sieve estimator that can be used to quantify the errors incurred from interpolating data across markets. To illustrate we use online bookmaking odds for English football leagues’ matches (as prices) and find evidence that suggests search costs for consumers have fallen following a change in the British law that allows gambling operators to advertise more widely. Supplementary materials for this article are available online. | pt_BR |
dc.format.extent | p. 658-671 | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | 10.1080/07350015.2016.1247003 | pt_BR |
dc.identifier.issn | 0735-0015 | pt_BR |
dc.identifier.issn | 1537-2707 | pt_BR |
dc.identifier.issue | 4 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4710 | |
dc.identifier.volume | 36 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Taylor & Francis Group | pt_BR |
dc.relation.ispartof | Journal of Business & Economic Statistics | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR. | pt_BR |
dc.subject.keywords | Bootstrap | pt_BR |
dc.subject.keywords | Generated variables | pt_BR |
dc.subject.keywords | M-Estimation | pt_BR |
dc.subject.keywords | Search cost | pt_BR |
dc.subject.keywords | Sieve estimation | pt_BR |
dc.title | Minimum distance estimation of search costs using price distribution | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://doi.org/10.1080/07350015.2016.1247003 | |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 80b08d65-f22c-4df9-9e17-9b169f92ceed | |
relation.isAuthorOfPublication.latestForDiscovery | 80b08d65-f22c-4df9-9e17-9b169f92ceed |
Arquivos
Pacote Original
1 - 2 de 2
N/D
- Nome:
- R_Artigo_2018_Minimum distance estimation_TC.pdf
- Tamanho:
- 1.87 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2018_Minimum distance estimation_TC
Carregando...
- Nome:
- Acesso_Primeira Pagina_Minimum distance estimation of search costs using price distribution.pdf
- Tamanho:
- 81.38 KB
- Formato:
- Adobe Portable Document Format
Licença do Pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: