Particle Learning for General Mixtures
dc.contributor.author | Carvalho, Carlos M. | |
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | Polson, Nicholas G. | |
dc.contributor.author | Taddy, Matt A. | |
dc.coverage.cidade | Não informado | pt_BR |
dc.coverage.pais | Não Informado | pt_BR |
dc.creator | Carvalho, Carlos M. | |
dc.creator | Polson, Nicholas G. | |
dc.creator | Taddy, Matt A. | |
dc.date.accessioned | 2022-10-05T23:23:15Z | |
dc.date.available | 2022-10-05T23:23:15Z | |
dc.date.issued | 2010 | |
dc.description.other | This paper develops particle learning (PL) methods for the estimation of general mixture models. The approach is distinguished from alternative particle filtering methods in two major ways. First, each iteration begins by resampling particles according to posterior predictive probability, leading to a more efficient set for propagation. Second, each particle tracks only the “essential state vector” thus leading to reduced dimensional inference. In addition, we describe how the approach will apply to more general mixture models of current interest in the literature; it is hoped that this will inspire a greater number of researchers to adopt sequential Monte Carlo methods for fitting their sophisticated mixture based models. Finally, we show that PL leads to straightforward tools for marginal likelihood calculation and posterior cluster allocation. | pt_BR |
dc.format.extent | p. 709-740 | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | 10.1214/10-BA525 | pt_BR |
dc.identifier.issue | 4 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4143 | |
dc.identifier.volume | 5 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Não informado | pt_BR |
dc.relation.ispartof | Bayesian Analysis | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR. | pt_BR |
dc.subject.keywords | Nonparametric | pt_BR |
dc.subject.keywords | mixture models | pt_BR |
dc.subject.keywords | particle filtering | pt_BR |
dc.subject.keywords | Dirichlet process | pt_BR |
dc.subject.keywords | Indian buffet process | pt_BR |
dc.subject.keywords | probit stick-breaking | pt_BR |
dc.title | Particle Learning for General Mixtures | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://projecteuclid.org/journals/bayesian-analysis/volume-5/issue-4/Particle-learning-for-general-mixtures/10.1214/10-BA525.full | |
local.subject.cnpq | Ciências Sociais Aplicadas | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote Original
1 - 2 de 2
N/D
- Nome:
- R_2010_Artigo_Particle learning for general mixtures_TC.pdf
- Tamanho:
- 1.03 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_2010_Artigo_Particle learning for general mixtures_TC
Carregando...
- Nome:
- Acesso_Primeira Pagina_Particle Learning for General Mixtures.pdf
- Tamanho:
- 103.96 KB
- Formato:
- Adobe Portable Document Format
Licença do Pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: