Bayesian generalizations of the integer-valued autoregressive model

dc.contributor.authorHEDIBERT FREITAS LOPES
dc.contributor.authorPAULO CILAS MARQUES FILHO
dc.contributor.authorGraziadei, Helton
dc.coverage.cidades.l.pt_BR
dc.coverage.paisEstados Unidospt_BR
dc.creatorGraziadei, Helton
dc.date.accessioned2022-12-19T11:05:51Z
dc.date.available2022-12-19T11:05:51Z
dc.date.issued2022
dc.description.notesTexto completopt_BR
dc.description.otherWe develop two Bayesian generalizations of the Poisson integer-valued autoregressive model. The AdINAR(1) model accounts for overdispersed data by means of an innovation process whose marginal distributions are finite mixtures, while the DP-INAR(1) model is a hierarchical extension involving a Dirichlet process, which is capable of modeling a latent pattern of heterogeneity in the distribution of the innovations rates. The probabilistic forecasting capabilities of both models are put to test in the analysis of crime data in Pittsburgh, with favorable results.pt_BR
dc.format.extentp. 336-356pt_BR
dc.format.mediumDigitalpt_BR
dc.identifier.doihttps://doi.org/10.1080/02664763.2020.1812544pt_BR
dc.identifier.issn0266-4763pt_BR
dc.identifier.issn1360-0532pt_BR
dc.identifier.issue2pt_BR
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/5077
dc.identifier.volume49pt_BR
dc.language.isoInglêspt_BR
dc.publisherRoutledgept_BR
dc.relation.ispartofJournal of Applied Statisticspt_BR
dc.rights.licenseO INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DO USUÁRIO VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR.pt_BR
dc.titleBayesian generalizations of the integer-valued autoregressive modelpt_BR
dc.typejournal article
dspace.entity.typePublication
local.subject.cnpqCiências Sociais Aplicadaspt_BR
local.typeArtigo Científicopt_BR
relation.isAuthorOfPublication41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca
relation.isAuthorOfPublication81f1ea11-d601-4050-ae7b-e6aff836da3f
relation.isAuthorOfPublication.latestForDiscovery81f1ea11-d601-4050-ae7b-e6aff836da3f

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
N/D
Nome:
R_Artigo_2022_Bayesian generalizations_EV.PNG
Tamanho:
147.79 KB
Formato:
Portable Network Graphics
Descrição:
R_Artigo_2022_Bayesian generalizations_EV

Licença do pacote

Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
282 B
Formato:
Item-specific license agreed upon to submission
Descrição: