Particle Learning for Sequential Bayesian Computation
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | Carvalho, Carlos M. | |
dc.contributor.author | Johannes, Michael S. | |
dc.contributor.author | Polson, Nicholas G. | |
dc.coverage.cidade | Não informado | pt_BR |
dc.coverage.pais | Não Informado | pt_BR |
dc.creator | Carvalho, Carlos M. | |
dc.creator | Johannes, Michael S. | |
dc.creator | Polson, Nicholas G. | |
dc.date.accessioned | 2022-08-23T20:18:03Z | |
dc.date.available | 2022-08-23T20:18:03Z | |
dc.date.issued | 2011 | |
dc.description.other | Particle learning provides a simulation-based approach to sequential Bayesian computation. To sample from a posterior distribution of interest we use an essential state vector together with a predictive and propagation rule to build a resampling-sampling framework. Predictive inference and sequential Bayes factors are a direct by-product. Our approach provides a simple yet powerful framework for the construction of sequential posterior sampling strategies for a variety of commonly used models. | pt_BR |
dc.format.extent | p. 317-360 | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4100 | |
dc.identifier.volume | 9 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Oxford University Press | pt_BR |
dc.relation.ispartof | Bayesian Statistics | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR. | pt_BR |
dc.subject.keywords | Particle learning | pt_BR |
dc.subject.keywords | Bayesian | pt_BR |
dc.subject.keywords | Dynamic factor models | pt_BR |
dc.subject.keywords | Essential state vector | pt_BR |
dc.subject.keywords | Mixture models | pt_BR |
dc.subject.keywords | Sequential inference | pt_BR |
dc.subject.keywords | Conditional dynamic linear models | pt_BR |
dc.subject.keywords | Nonparametric | pt_BR |
dc.subject.keywords | Dirichlet | pt_BR |
dc.title | Particle Learning for Sequential Bayesian Computation | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://www0.gsb.columbia.edu/mygsb/faculty/research/pubfiles/4772/Particle_Learning.pdf#:~:text=Summary%20Particle%20learning%20provides%20a%20simulation-based%20approach%20to,and%20sequential%20Bayes%20factors%20are%20a%20direct%20by-product. | |
local.subject.cnpq | Ciências Sociais Aplicadas | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote Original
1 - 2 de 2
N/D
- Nome:
- R_Artigo_2019_Particle Learning for Sequential_TC.pdf
- Tamanho:
- 7.08 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2019_Particle Learning for Sequential_TC
Carregando...
- Nome:
- Acesso_Primeira Pagina_Particle Learning for Sequential Bayesian Computation.pdf
- Tamanho:
- 83.19 KB
- Formato:
- Adobe Portable Document Format
Licença do Pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: