Confidence intervals for the random forest generalization error
Autores
Orientador
Co-orientadores
Citações na Scopus
Tipo de documento
Artigo Científico
Data
2022
Resumo
We show that the byproducts of the standard training process of a random forest yield not only the well known and almost computationally free out-of-bag point estimate of the model generalization error, but also open a direct path to compute confidence intervals for the generalization error which avoids processes of data splitting and model retraining. Besides the low computational cost involved in their construction, these confidence intervals are shown through simulations to have good coverage and appropriate shrinking rate of their width in terms of the training sample size.
Palavras-chave
Random forests; Generalization error; Out-of-bag estimation; Confidence interval; Bootstrapping
Vínculo institucional
Titulo de periódico
Pattern Recognition Letters
DOI
Título de Livro
URL na Scopus
Idioma
Inglês
Notas
Membros da banca
Área do Conhecimento CNPQ
CIENCIAS SOCIAIS APLICADAS