Confidence intervals for the random forest generalization error

dc.contributor.authorPAULO CILAS MARQUES FILHO
dc.date.accessioned2024-09-27T23:57:08Z
dc.date.available2024-09-27T23:57:08Z
dc.date.issued2022
dc.description.abstractWe show that the byproducts of the standard training process of a random forest yield not only the well known and almost computationally free out-of-bag point estimate of the model generalization error, but also open a direct path to compute confidence intervals for the generalization error which avoids processes of data splitting and model retraining. Besides the low computational cost involved in their construction, these confidence intervals are shown through simulations to have good coverage and appropriate shrinking rate of their width in terms of the training sample size.en
dc.formatDigital
dc.format.extentp. 171 - 175
dc.identifier.doi10.1016/j.patrec.2022.04.031
dc.identifier.issn0167-8655
dc.identifier.issn1872-7344
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/6993
dc.language.isoInglês
dc.publisherInternational Association for Pattern Recognition
dc.relation.isboundProdução vinculada ao Núcleo de Ciências de Dados e Decisão
dc.relation.ispartofPattern Recognition Letters
dc.subjectRandom forestsen
dc.subjectGeneralization erroren
dc.subjectOut-of-bag estimationpt
dc.subjectConfidence intervalpt
dc.subjectBootstrappingpt
dc.titleConfidence intervals for the random forest generalization error
dc.typejournal article
dspace.entity.typePublication
local.identifier.sourceUrihttps://www.sciencedirect.com/science/article/pii/S0167865522001416?via%3Dihub
local.publisher.countryNão Informado
local.subject.cnpqCIENCIAS SOCIAIS APLICADAS
local.typeArtigo Científico
publicationvolume.volumeNumber158
relation.isAuthorOfPublication81f1ea11-d601-4050-ae7b-e6aff836da3f
relation.isAuthorOfPublication.latestForDiscovery81f1ea11-d601-4050-ae7b-e6aff836da3f

Arquivos

Pacote original

Agora exibindo 1 - 2 de 2
N/D
Nome:
ACESSO_RESTRITO_Artigo_2022_Confidence_intervals_for_the_random_forest_generalization_error_TC.pdf
Tamanho:
435.14 KB
Formato:
Adobe Portable Document Format
N/D
Nome:
Acesso_Primeira Pagina_Confidence intervals for the random forest generalization error.pdf
Tamanho:
247.55 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
236 B
Formato:
Item-specific license agreed upon to submission
Descrição: