Confidence intervals for the random forest generalization error
dc.contributor.author | PAULO CILAS MARQUES FILHO | |
dc.date.accessioned | 2024-09-27T23:57:08Z | |
dc.date.available | 2024-09-27T23:57:08Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We show that the byproducts of the standard training process of a random forest yield not only the well known and almost computationally free out-of-bag point estimate of the model generalization error, but also open a direct path to compute confidence intervals for the generalization error which avoids processes of data splitting and model retraining. Besides the low computational cost involved in their construction, these confidence intervals are shown through simulations to have good coverage and appropriate shrinking rate of their width in terms of the training sample size. | en |
dc.format | Digital | |
dc.format.extent | p. 171 - 175 | |
dc.identifier.doi | 10.1016/j.patrec.2022.04.031 | |
dc.identifier.issn | 0167-8655 | |
dc.identifier.issn | 1872-7344 | |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/6993 | |
dc.language.iso | Inglês | |
dc.publisher | International Association for Pattern Recognition | |
dc.relation.isbound | Produção vinculada ao Núcleo de Ciências de Dados e Decisão | |
dc.relation.ispartof | Pattern Recognition Letters | |
dc.subject | Random forests | en |
dc.subject | Generalization error | en |
dc.subject | Out-of-bag estimation | pt |
dc.subject | Confidence interval | pt |
dc.subject | Bootstrapping | pt |
dc.title | Confidence intervals for the random forest generalization error | |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://www.sciencedirect.com/science/article/pii/S0167865522001416?via%3Dihub | |
local.publisher.country | Não Informado | |
local.subject.cnpq | CIENCIAS SOCIAIS APLICADAS | |
local.type | Artigo Científico | |
publicationvolume.volumeNumber | 158 | |
relation.isAuthorOfPublication | 81f1ea11-d601-4050-ae7b-e6aff836da3f | |
relation.isAuthorOfPublication.latestForDiscovery | 81f1ea11-d601-4050-ae7b-e6aff836da3f |
Arquivos
Pacote original
1 - 2 de 2
N/D
- Nome:
- ACESSO_RESTRITO_Artigo_2022_Confidence_intervals_for_the_random_forest_generalization_error_TC.pdf
- Tamanho:
- 435.14 KB
- Formato:
- Adobe Portable Document Format
N/D
- Nome:
- Acesso_Primeira Pagina_Confidence intervals for the random forest generalization error.pdf
- Tamanho:
- 247.55 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 236 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: