Neonatal mortality prediction with routinely collected data: a machine learning approach

dc.contributor.authorANDRE FILIPE DE MORAES BATISTA
dc.contributor.authorDiniz, Carmen S. G.
dc.contributor.authorBonilha, Eliana A.
dc.contributor.authorKawachi, Ichiro
dc.contributor.authorChiavegatto Filho, Alexandre D. P.
dc.creatorDiniz, Carmen S. G.
dc.creatorBonilha, Eliana A.
dc.creatorKawachi, Ichiro
dc.creatorChiavegatto Filho, Alexandre D. P.
dc.date.accessioned2024-11-22T16:37:09Z
dc.date.available2024-11-22T16:37:09Z
dc.date.issued2021
dc.description.abstractBackground: Recent decreases in neonatal mortality have been slower than expected for most countries. This study aims to predict the risk of neonatal mortality using only data routinely available from birth records in the largest city of the Americas. Methods: A probabilistic linkage of every birth record occurring in the municipality of São Paulo, Brazil, between 2012 e 2017 was performed with the death records from 2012 to 2018 (1,202,843 births and 447,687 deaths), and a total of 7282 neonatal deaths were identified (a neonatal mortality rate of 6.46 per 1000 live births). Births from 2012 and 2016 (N = 941,308; or 83.44% of the total) were used to train five different machine learning algorithms, while births occurring in 2017 (N = 186,854; or 16.56% of the total) were used to test their predictive performance on new unseen data. Results: The best performance was obtained by the extreme gradient boosting trees (XGBoost) algorithm, with a very high AUC of 0.97 and F1-score of 0.55. The 5% births with the highest predicted risk of neonatal death included more than 90% of the actual neonatal deaths. On the other hand, there were no deaths among the 5% births with the lowest predicted risk. There were no significant differences in predictive performance for vulnerable subgroups. The use of a smaller number of variables (WHO’s five minimum perinatal indicators) decreased overall performance but the results still remained high (AUC of 0.91). With the addition of only three more variables, we achieved the same predictive performance (AUC of 0.97) as using all the 23 variables originally available from the Brazilian birth records. Conclusion: Machine learning algorithms were able to identify with very high predictive performance the neonatal mortality risk of newborns using only routinely collected data.en
dc.formatDigital
dc.format.extent6 p.
dc.identifier.doi10.1186/s12887-021-02788-9
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/7236
dc.language.isoInglês
dc.relation.ispartofBMC Pediatrics
dc.subjectMachine learningen
dc.subjectArtificial intelligenceen
dc.subjectPredictionen
dc.subjectNeonatal mortalityen
dc.subjectBirth recordsen
dc.subjectBrazilen
dc.titleNeonatal mortality prediction with routinely collected data: a machine learning approach
dc.typejournal article
dspace.entity.typePublication
local.identifier.sourceUrihttps://bmcpediatr.biomedcentral.com/articles/10.1186/s12887-021-02788-9#citeas
local.publisher.countryNão Informado
local.subject.cnpqCIENCIAS DA SAUDE::MEDICINA
local.subject.cnpqCIENCIAS DA SAUDE::SAUDE COLETIVA
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
local.subject.cnpqENGENHARIAS::ENGENHARIA BIOMEDICA
local.typeArtigo Científico
publicationvolume.volumeNumber21
relation.isAuthorOfPublicationb10d272e-98b2-4953-8e51-37aea3fde20c
relation.isAuthorOfPublication.latestForDiscoveryb10d272e-98b2-4953-8e51-37aea3fde20c
Arquivos
Pacote Original
Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
Primeira_Pagina_Artigo_2021_Neonatal_mortality_prediction_with_routinely_collected_data_a_machine_learning_approach_TC.pdf
Tamanho:
148.8 KB
Formato:
Adobe Portable Document Format
N/D
Nome:
ACESSO_RESTRITO_Artigo_2021_Neonatal_mortality_prediction_with_routinely_collected_data_a_machine_learning_approach_TC.pdf
Tamanho:
919.93 KB
Formato:
Adobe Portable Document Format
Licença do Pacote
Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
236 B
Formato:
Item-specific license agreed upon to submission
Descrição: