Decoupling Shrinkage and Selection in Gaussian Linear Factor Analysis
Autores
Orientador
Co-orientadores
Citações na Scopus
Tipo de documento
Artigo Científico
Data
2024
Resumo
Factor analysis is a popular method for modeling dependence in multivariate data. However, determining the number of factors and obtaining a sparse
orientation of the loadings are still major challenges. In this paper, we propose a decision-theoretic approach that brings to light the relationship between model fit, factor dimension, and sparse loadings. This relation is done through a summary of the information contained in the multivariate posterior. A two-step strategy is used in our method. First, given the posterior samples from the Bayesian factor analysis model, a series of point estimates with a decreasing number of factors and different levels of sparsity are recovered by minimizing an expected penalized loss function. Second, the degradation in model fit between the posterior of the full model and the recovered estimates is displayed in a summary. In this step, a criterion is proposed for selecting the factor model with the best trade-off between fit, sparseness, and factor dimension. The findings are illustrated through a simulation study and an application to personality data. We used different prior choices to show the flexibility of the proposed method.
Palavras-chave
Bayesian factor analysis; Model selection; Sparse loadings; Factor dimension; Loss function
Vínculo institucional
Titulo de periódico
Bayesian Anal
DOI
Título de Livro
URL na Scopus
Idioma
Inglês
Notas
Membros da banca
Área do Conhecimento CNPQ
CIENCIAS EXATAS E DA TERRA::MATEMATICA
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
ENGENHARIAS::ENGENHARIA ELETRICA
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
ENGENHARIAS::ENGENHARIA ELETRICA
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO