Decoupling Shrinkage and Selection in Gaussian Linear Factor Analysis
dc.contributor.author | Bolfarine, Henrique | |
dc.contributor.author | Carvalho, Carlos M. | |
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | Murray, Jared S. | |
dc.creator | Bolfarine, Henrique | |
dc.creator | Carvalho, Carlos M. | |
dc.creator | Murray, Jared S. | |
dc.date.accessioned | 2024-10-28T18:55:10Z | |
dc.date.available | 2024-10-28T18:55:10Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Factor analysis is a popular method for modeling dependence in multivariate data. However, determining the number of factors and obtaining a sparse orientation of the loadings are still major challenges. In this paper, we propose a decision-theoretic approach that brings to light the relationship between model fit, factor dimension, and sparse loadings. This relation is done through a summary of the information contained in the multivariate posterior. A two-step strategy is used in our method. First, given the posterior samples from the Bayesian factor analysis model, a series of point estimates with a decreasing number of factors and different levels of sparsity are recovered by minimizing an expected penalized loss function. Second, the degradation in model fit between the posterior of the full model and the recovered estimates is displayed in a summary. In this step, a criterion is proposed for selecting the factor model with the best trade-off between fit, sparseness, and factor dimension. The findings are illustrated through a simulation study and an application to personality data. We used different prior choices to show the flexibility of the proposed method. | en |
dc.format | Físico | |
dc.format.extent | p. 181 – 203 | |
dc.identifier.doi | 10.1214/22-BA1349 | |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/7184 | |
dc.language.iso | Inglês | |
dc.relation.isbound | Produção vinculada ao Núcleo de Ciências de Dados e Decisão | |
dc.relation.ispartof | Bayesian Anal | |
dc.subject | Bayesian factor analysis | en |
dc.subject | Model selection | en |
dc.subject | Sparse loadings | en |
dc.subject | Factor dimension | en |
dc.subject | Loss function | en |
dc.title | Decoupling Shrinkage and Selection in Gaussian Linear Factor Analysis | |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://projecteuclid.org/journals/bayesian-analysis/volume-19/issue-1/Decoupling-Shrinkage-and-Selection-in-Gaussian-Linear-Factor-Analysis/10.1214/22-BA1349.full | |
local.publisher.country | Não Informado | |
local.subject.cnpq | CIENCIAS EXATAS E DA TERRA::MATEMATICA | |
local.subject.cnpq | CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA | |
local.subject.cnpq | ENGENHARIAS::ENGENHARIA ELETRICA | |
local.subject.cnpq | CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | |
local.type | Artigo Científico | |
publicationissue.issueNumber | 1 | |
publicationvolume.volumeNumber | 19 | |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 2 de 2
N/D
- Nome:
- ACESSO_RESTRITO_Artigo_2024_Decoupling_shrinkage_and_selection_in_gaussian_linear_factor_analysis_TC.pdf
- Tamanho:
- 602.15 KB
- Formato:
- Adobe Portable Document Format
N/D
- Nome:
- Acesso_Primeira Pagina_Decoupling Shrinkage and Selection in Gaussian Linear Factor Analysis.pdf
- Tamanho:
- 66.01 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 236 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: