Bayesian Factor Model Shrinkage for Linear IV Regression With Many Instruments
dc.contributor.author | Hahn, P. Richard | |
dc.contributor.author | He, Jingyu | |
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.coverage.cidade | Não informado | pt_BR |
dc.coverage.pais | Não Informado | pt_BR |
dc.creator | Hahn, P. Richard | |
dc.creator | He, Jingyu | |
dc.date.accessioned | 2022-08-20T14:01:32Z | |
dc.date.available | 2022-08-20T14:01:32Z | |
dc.date.issued | 2017 | |
dc.description.other | A Bayesian approach for the many instruments problem in linear instrumental variable models is presented. The new approach has two components. First, a slice sampler is developed, which leverages a decomposition of the likelihood function that is a Bayesian analogue to two-stage least squares. The new sampler permits nonconjugate shrinkage priors to be implemented easily and efficiently. The new computational approach permits a Bayesian analysis of problems that were previously infeasible due to computational demands that scaled poorly in the number of regressors. Second, a new predictor dependent shrinkage prior is developed specifically for the many instruments setting. The prior is constructed based on a factor model decomposition of the matrix of observed instruments, allowing many instruments to be incorporated into the analysis in a robust way. Features of the new method are illustrated via a simulation study and three empirical examples. | pt_BR |
dc.format.extent | p. 278-287 | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | 10.1080/07350015.2016.1172968 | pt_BR |
dc.identifier.issn | 15372707 | pt_BR |
dc.identifier.issue | 2 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4067 | |
dc.identifier.volume | 36 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Não informado | pt_BR |
dc.relation.isbound | Produção vinculada ao Núcleo de Ciências de Dados e Decisão | |
dc.relation.ispartof | Journal of Business & Economic Statistics | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR. | pt_BR |
dc.subject.keywords | Bayesian econometrics | pt_BR |
dc.subject.keywords | Horseshoe prior | pt_BR |
dc.subject.keywords | Instrumental variables | pt_BR |
dc.subject.keywords | Slice sampler | pt_BR |
dc.title | Bayesian Factor Model Shrinkage for Linear IV Regression With Many Instruments | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://www.tandfonline.com/doi/full/10.1080/07350015.2016.1172968 | |
local.subject.cnpq | Ciências Sociais Aplicadas | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 2 de 2
N/D
- Nome:
- R_Artigo_2017_Bayesian Factor Model Shrinkage_TC.pdf
- Tamanho:
- 591.08 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2017_Bayesian Factor Model Shrinkage_TC
- Nome:
- Acesso_Primeira Pagina_Bayesian Factor Model Shrinkage for Linear IV Regression With Many Instruments.pdf
- Tamanho:
- 34.39 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: