A semiparametric Bayesian approach to extreme value estimation
dc.contributor.author | Nascimento, Fernando Ferraz do | |
dc.contributor.author | Gamerman, Dani | |
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.coverage.cidade | Não informado | pt_BR |
dc.coverage.pais | Não Informado | pt_BR |
dc.creator | Nascimento, Fernando Ferraz do | |
dc.creator | Gamerman, Dani | |
dc.date.accessioned | 2022-08-18T17:38:44Z | |
dc.date.available | 2022-08-18T17:38:44Z | |
dc.date.issued | 2012 | |
dc.description.other | This paper is concerned with extreme value density estimation. The generalized Pareto distribution (GPD) beyond a given threshold is combined with a nonparametric estimation approach below the threshold. This semiparametric setup is shown to generalize a few existing approaches and enables density estimation over the complete sample space. Estimation is performed via the Bayesian paradigm, which helps identify model components. Estimation of all model parameters, including the threshold and higher quantiles, and prediction for future observations is provided. Simulation studies suggest a few useful guidelines to evaluate the relevance of the proposed procedures. They also provide empirical evidence about the improvement of the proposed methodology over existing approaches. Models are then applied to environmental data sets. The paper is concluded with a few directions for future work. | pt_BR |
dc.format.extent | p. 661–675 | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | 10.1007/s11222-011-9270-z | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4041 | |
dc.identifier.volume | 22 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Springer | pt_BR |
dc.relation.ispartof | Statistics and Computing | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR. | pt_BR |
dc.subject.keywords | Bayesian | pt_BR |
dc.subject.keywords | GPD | pt_BR |
dc.subject.keywords | Higher quantiles | pt_BR |
dc.subject.keywords | MCMC | pt_BR |
dc.subject.keywords | Threshold estimation | pt_BR |
dc.subject.keywords | Nonparametric estimation of curves | pt_BR |
dc.title | A semiparametric Bayesian approach to extreme value estimation | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://link.springer.com/article/10.1007/s11222-011-9270-z | |
local.subject.cnpq | Ciências Sociais Aplicadas | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 2 de 2
N/D
- Nome:
- R_Artigo_2011_A semiparametric Bayesian approach.pdf
- Tamanho:
- 634.78 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2011_A semiparametric Bayesian approach
- Nome:
- Acesso_Primeira Pagina_A semiparametric Bayesian approach to extreme value estimation.pdf
- Tamanho:
- 105.23 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: