Bayesian mixture of parametric and nonparametric density estimation: A Misspecification Problem
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.contributor.author | Dias, Ronaldo | |
dc.coverage.cidade | Não informado | pt_BR |
dc.coverage.pais | Brasil | pt_BR |
dc.creator | Dias, Ronaldo | |
dc.date.accessioned | 2022-08-18T18:19:29Z | |
dc.date.available | 2022-08-18T18:19:29Z | |
dc.date.issued | 2011 | |
dc.description.other | In this paper we study the effect of model misspecifications for probability density func tion estimation. We use a mixture of a parametric and nonparametric density estima tion. The former can be modeled by any suitable parametric probability density function, including mixture of parametric models. The latter is given by the known B-spline es timation. The procedure also deals with the situation when a highly structured data are collected so that it is difficult to propose a parametric model with a large number of mixture components. Then a nonparametric part would help to postulate an appropriate model. In addition, in order to reduce the computational cost of getting a nonparamet ric density for high dimensional data a parametric mixture of densities could be used as the starting point for modeling such dataset. Our procedure is computed by using EM-type algorithm for a non-Bayesian approach and MCMC algorithm under a Bayesian point of view. Simulations and real data analysis show that our proposed procedure have performed quite well even for non structured datasets. | pt_BR |
dc.format.extent | 26 p. | pt_BR |
dc.format.medium | Digital | pt_BR |
dc.identifier.doi | https://doi.org/10.12660/bre.v31n12011.4134 | pt_BR |
dc.identifier.issue | 1 | pt_BR |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/4042 | |
dc.identifier.volume | 31 | pt_BR |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Não informado | pt_BR |
dc.relation.ispartof | Brazilian Review of Econometrics | pt_BR |
dc.rights.license | O INSPER E ESTE REPOSITÓRIO NÃO DETÊM OS DIREITOS DE USO E REPRODUÇÃO DOS CONTEÚDOS AQUI REGISTRADOS. É RESPONSABILIDADE DOS USUÁRIOS INDIVIDUAIS VERIFICAR OS USOS PERMITIDOS NA FONTE ORIGINAL, RESPEITANDO-SE OS DIREITOS DE AUTOR OU EDITOR. | pt_BR |
dc.subject.keywords | Nonparametric Density Estimation | pt_BR |
dc.subject.keywords | B-Splines | pt_BR |
dc.subject.keywords | Mixtures Models | pt_BR |
dc.subject.keywords | MCMC | pt_BR |
dc.subject.keywords | EM-Algortihm | pt_BR |
dc.title | Bayesian mixture of parametric and nonparametric density estimation: A Misspecification Problem | pt_BR |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://bibliotecadigital.fgv.br/ojs/index.php/bre/article/view/4134 | |
local.subject.cnpq | Ciências Sociais Aplicadas | pt_BR |
local.type | Artigo Científico | pt_BR |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 2 de 2
N/D
- Nome:
- R_Artigo_2011_Bayesian mixture of parametric and nonparametric density estimation_TC.pdf
- Tamanho:
- 463.18 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
- R_Artigo_2011_Bayesian mixture of parametric and nonparametric density estimation_TC
- Nome:
- Acesso_Primeira Pagina_Bayesian mixture of parametric and nonparametric density estimation A Misspecification Problem.pdf
- Tamanho:
- 50.53 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 282 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: