Sparse Bayesian Factor Analysis When the Number of Factors Is Unknown
Autores
Orientador
Co-orientadores
Citações na Scopus
Tipo de documento
Artigo Científico
Data
2024
Resumo
There has been increased research interest in the subfield of sparse Bayesian factor analysis with shrinkage priors, which achieve additional sparsity
beyond the natural parsimonity of factor models. In this spirit, we estimate the number of common factors in the widely applied sparse latent factor model with spike-and-slab priors on the factor loadings matrix. Our framework leads to a natural, efficient and simultaneous coupling of model estimation and selection on
one hand and model identification and rank estimation (number of factors) on the other hand. More precisely, by embedding the unordered generalised lower trian gular loadings representation into overfitting sparse factor modelling, we obtain posterior summaries regarding factor loadings, common factors as well as the factor dimension via postprocessing draws from our efficient and customized Markov chain Monte Carlo scheme.
Palavras-chave
Hierarchical model; Identifiability; Point-mass mixture priors; Marginal data augmentation; Reversible jump MCMC; Prior distribution; Sparsity; Heywood problem; Rotational invariance; Ancillarity-sufficiency interweaving strategy; Fractional priors
Vínculo institucional
Titulo de periódico
Bayesian Anal. Advance Publication
DOI
Título de Livro
URL na Scopus
Sinopse
Objetivos de aprendizagem
Idioma
Inglês
Notas
Membros da banca
Área do Conhecimento CNPQ
CIENCIAS EXATAS E DA TERRA::MATEMATICA
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
ENGENHARIAS::ENGENHARIA ELETRICA
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
ENGENHARIAS::ENGENHARIA ELETRICA
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO