Sparse Bayesian Factor Analysis When the Number of Factors Is Unknown

dc.contributor.authorFrühwirth-Schnatter, Sylvia
dc.contributor.authorHosszejni, Darjus
dc.contributor.authorHEDIBERT FREITAS LOPES
dc.creatorFrühwirth-Schnatter, Sylvia
dc.creatorHosszejni, Darjus
dc.date.accessioned2024-10-28T18:40:47Z
dc.date.available2024-10-28T18:40:47Z
dc.date.issued2024
dc.description.abstractThere has been increased research interest in the subfield of sparse Bayesian factor analysis with shrinkage priors, which achieve additional sparsity beyond the natural parsimonity of factor models. In this spirit, we estimate the number of common factors in the widely applied sparse latent factor model with spike-and-slab priors on the factor loadings matrix. Our framework leads to a natural, efficient and simultaneous coupling of model estimation and selection on one hand and model identification and rank estimation (number of factors) on the other hand. More precisely, by embedding the unordered generalised lower trian gular loadings representation into overfitting sparse factor modelling, we obtain posterior summaries regarding factor loadings, common factors as well as the factor dimension via postprocessing draws from our efficient and customized Markov chain Monte Carlo scheme.en
dc.formatDigital
dc.format.extent48 p.
dc.identifier.doi10.1214/24-BA1423
dc.identifier.urihttps://repositorio.insper.edu.br/handle/11224/7183
dc.language.isoInglês
dc.publisherInternational Society for Bayesian Analysis
dc.relation.isboundProdução vinculada ao Núcleo de Ciências de Dados e Decisão
dc.relation.ispartofBayesian Anal. Advance Publication
dc.subjectHierarchical modelen
dc.subjectIdentifiabilityen
dc.subjectPoint-mass mixture priorsen
dc.subjectMarginal data augmentationen
dc.subjectReversible jump MCMCen
dc.subjectPrior distributionen
dc.subjectSparsityen
dc.subjectHeywood problemen
dc.subjectRotational invarianceen
dc.subjectAncillarity-sufficiency interweaving strategyen
dc.subjectFractional priorsen
dc.titleSparse Bayesian Factor Analysis When the Number of Factors Is Unknown
dc.typejournal article
dspace.entity.typePublication
local.identifier.sourceUrihttps://projecteuclid.org/journals/bayesian-analysis/volume--1/issue--1/Sparse-Bayesian-Factor-Analysis-When-the-Number-of-Factors-Is/10.1214/24-BA1423.full?tab=ArticleLink
local.publisher.countryNão Informado
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::MATEMATICA
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
local.subject.cnpqENGENHARIAS::ENGENHARIA ELETRICA
local.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
local.typeArtigo Científico
relation.isAuthorOfPublication41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca
relation.isAuthorOfPublication.latestForDiscovery41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca

Arquivos

Pacote original

Agora exibindo 1 - 2 de 2
N/D
Nome:
ACESSO_RESTRITO_Artigo_2024_Sparse_bayesian_factor_analysis_when_the_number_of_factors_is_unknown_TC.pdf
Tamanho:
1.23 MB
Formato:
Adobe Portable Document Format
N/D
Nome:
Acesso_Primeira Pagina_Sparse Bayesian Factor Analysis When the Number of Factors Is Unknown..pdf
Tamanho:
96.34 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
N/D
Nome:
license.txt
Tamanho:
236 B
Formato:
Item-specific license agreed upon to submission
Descrição: