Sparse Bayesian Factor Analysis When the Number of Factors Is Unknown
dc.contributor.author | Frühwirth-Schnatter, Sylvia | |
dc.contributor.author | Hosszejni, Darjus | |
dc.contributor.author | HEDIBERT FREITAS LOPES | |
dc.creator | Frühwirth-Schnatter, Sylvia | |
dc.creator | Hosszejni, Darjus | |
dc.date.accessioned | 2024-10-28T18:40:47Z | |
dc.date.available | 2024-10-28T18:40:47Z | |
dc.date.issued | 2024 | |
dc.description.abstract | There has been increased research interest in the subfield of sparse Bayesian factor analysis with shrinkage priors, which achieve additional sparsity beyond the natural parsimonity of factor models. In this spirit, we estimate the number of common factors in the widely applied sparse latent factor model with spike-and-slab priors on the factor loadings matrix. Our framework leads to a natural, efficient and simultaneous coupling of model estimation and selection on one hand and model identification and rank estimation (number of factors) on the other hand. More precisely, by embedding the unordered generalised lower trian gular loadings representation into overfitting sparse factor modelling, we obtain posterior summaries regarding factor loadings, common factors as well as the factor dimension via postprocessing draws from our efficient and customized Markov chain Monte Carlo scheme. | en |
dc.format | Digital | |
dc.format.extent | 48 p. | |
dc.identifier.doi | 10.1214/24-BA1423 | |
dc.identifier.uri | https://repositorio.insper.edu.br/handle/11224/7183 | |
dc.language.iso | Inglês | |
dc.publisher | International Society for Bayesian Analysis | |
dc.relation.isbound | Produção vinculada ao Núcleo de Ciências de Dados e Decisão | |
dc.relation.ispartof | Bayesian Anal. Advance Publication | |
dc.subject | Hierarchical model | en |
dc.subject | Identifiability | en |
dc.subject | Point-mass mixture priors | en |
dc.subject | Marginal data augmentation | en |
dc.subject | Reversible jump MCMC | en |
dc.subject | Prior distribution | en |
dc.subject | Sparsity | en |
dc.subject | Heywood problem | en |
dc.subject | Rotational invariance | en |
dc.subject | Ancillarity-sufficiency interweaving strategy | en |
dc.subject | Fractional priors | en |
dc.title | Sparse Bayesian Factor Analysis When the Number of Factors Is Unknown | |
dc.type | journal article | |
dspace.entity.type | Publication | |
local.identifier.sourceUri | https://projecteuclid.org/journals/bayesian-analysis/volume--1/issue--1/Sparse-Bayesian-Factor-Analysis-When-the-Number-of-Factors-Is/10.1214/24-BA1423.full?tab=ArticleLink | |
local.publisher.country | Não Informado | |
local.subject.cnpq | CIENCIAS EXATAS E DA TERRA::MATEMATICA | |
local.subject.cnpq | CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA | |
local.subject.cnpq | ENGENHARIAS::ENGENHARIA ELETRICA | |
local.subject.cnpq | CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | |
local.type | Artigo Científico | |
relation.isAuthorOfPublication | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca | |
relation.isAuthorOfPublication.latestForDiscovery | 41f844cb-0e5a-4ef1-bb19-5ab1cec8e2ca |
Arquivos
Pacote original
1 - 2 de 2
N/D
- Nome:
- ACESSO_RESTRITO_Artigo_2024_Sparse_bayesian_factor_analysis_when_the_number_of_factors_is_unknown_TC.pdf
- Tamanho:
- 1.23 MB
- Formato:
- Adobe Portable Document Format
N/D
- Nome:
- Acesso_Primeira Pagina_Sparse Bayesian Factor Analysis When the Number of Factors Is Unknown..pdf
- Tamanho:
- 96.34 KB
- Formato:
- Adobe Portable Document Format
Licença do pacote
1 - 1 de 1
N/D
- Nome:
- license.txt
- Tamanho:
- 236 B
- Formato:
- Item-specific license agreed upon to submission
- Descrição: